搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究

胡小颖 王淑敏 裴艳慧 田宏伟 朱品文

引用本文:
Citation:

碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究

胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文

One-step synthesis of a carbon nano sheet-scarbon nanotubes composite and its field emission properties

Hu Xiao-Ying, Wang Shu-Min, Pei Yan-Hui, Tian Hong-Wei, Zhu Pin-Wen
PDF
导出引用
  • 利用等离子体化学气相沉积技术, 在引入Ti过渡层后的Co膜表面一步制备出碳纳米片-碳纳米管复合材料, 研究了Co膜厚度对复合材料形貌及场发射性质的影响. 当Co薄膜厚度为11 nm时, 得到了垂直基片定向生长的碳纳米管和碳纳米片复合物, 此时, 碳纳米片分布在碳纳米管的管壁上和管的顶端, 样品的场发射性能最佳.
    One-step synthesis of a carbon nano sheets-carbon nanotubes composite by plasma enhanced chemical vapor deposition and its field emission properties are investigated. We obtain the carbon nano sheets-carbon nanotube composite on the Co thin film with 20 nm Ti interlayer. We gain carbon nano sheets only on the Co thin films without Ti interlayer in the same growth conditions. The carbon nano sheets are distributed on the side wall and the top of carbon nanotubes. The Ti interlayer hinders the diffusion of Co into the silicon substrate and improves the catalytic capability of Co, thus it will help the growth of carbon nanotubes. When the thickness of Co film is 11 nm, the carbon nanotubes are vertically aligned on the flat Co film surface. Most of the carbon nano sheets are distributed on the top of the carbon nanotubes under this condition, which increases the number of emitters and enhances the field emission properties of the composites.
    • 基金项目: 国家自然科学基金 (批准号: 51002061, 51202017);吉林省自然科学基金 (批准号: 201115019, 201215104) 和吉林大学超硬材料国家重点实验室开放基金(批准号: 201215, 201110) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51002061, 51202017), the Natural Science Foundation of Jilin Province, China (Grant Nos. 201115019, 201215104) and the Open Project of State Key Laboratory of Superhard Materials (Jilin University), China ( Grant No. 201215, 201110).
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Yao Z D, Li W, Gao X L 2012 Acta Phys. Sin. 61 117105 (in Chinese) [姚志东, 李炜, 高先龙 2012 物理学报 61 117105]

    [4]

    Hu F, Duan L, Ding J W 2012 Acta Phys. Sin. 61 077201 (in Chinese) [胡飞, 段玲, 丁建文 2012 物理学报 61 077201]

    [5]

    Zheng W T, Ho Y M, Tian H W, Wen M, Qi J L, Li Y A 2009 J. Phys. Chem. C 113 9164

    [6]

    Hu X H, Xu J M, Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106]

    [7]

    Zhu X, Ning G Q, Fan Z J, Gao J S, Xu C M, Qian W Z, Wei F 2012 Carbon 50 2764

    [8]

    Li C Y, Li Z, Zhu H W, Wang K L, Wei J Q, Li X A, Sun P Z, Zhang H, Wu D H 2010 J Phys. Chem. C 114 14008

    [9]

    Zhu H Q, Zhang Y M, Yue L, Li W S, Li G L, Shu D, Chen H Y 2008 J. Power Sources 184 637

    [10]

    Deng J H, Zheng R T, Zhao Y, Cheng G A 2012 ACS Nano 6 3727

    [11]

    Pei Y H 2012 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [裴艳慧 2012 硕士学位论文 (长春: 吉林大学)]

    [12]

    de los Arcos T, Vonau F, Garnier M G, Thommen V, Boyen H G, Oelhafen P, Duggelin M, Mathis D, Guggenheim R 2002 Appl. Phys. Lett. 80 2383

    [13]

    Kabir M S, Morjan R E, Nerushev O A, Lundgren P, Bengtsson S, Enokson P, Campbell E E B 2005 Nanotechnology 16 458

    [14]

    Sun X H, Li K, Wu R, Wilhite P, Saito T, Gao J, Yang C Y 2010 Nanotechnology 21 045201

    [15]

    Matsuda Y, Deng W Q, Goddard W A 2007 J. Phys. Chem. C 111 11113

  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Yao Z D, Li W, Gao X L 2012 Acta Phys. Sin. 61 117105 (in Chinese) [姚志东, 李炜, 高先龙 2012 物理学报 61 117105]

    [4]

    Hu F, Duan L, Ding J W 2012 Acta Phys. Sin. 61 077201 (in Chinese) [胡飞, 段玲, 丁建文 2012 物理学报 61 077201]

    [5]

    Zheng W T, Ho Y M, Tian H W, Wen M, Qi J L, Li Y A 2009 J. Phys. Chem. C 113 9164

    [6]

    Hu X H, Xu J M, Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106]

    [7]

    Zhu X, Ning G Q, Fan Z J, Gao J S, Xu C M, Qian W Z, Wei F 2012 Carbon 50 2764

    [8]

    Li C Y, Li Z, Zhu H W, Wang K L, Wei J Q, Li X A, Sun P Z, Zhang H, Wu D H 2010 J Phys. Chem. C 114 14008

    [9]

    Zhu H Q, Zhang Y M, Yue L, Li W S, Li G L, Shu D, Chen H Y 2008 J. Power Sources 184 637

    [10]

    Deng J H, Zheng R T, Zhao Y, Cheng G A 2012 ACS Nano 6 3727

    [11]

    Pei Y H 2012 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [裴艳慧 2012 硕士学位论文 (长春: 吉林大学)]

    [12]

    de los Arcos T, Vonau F, Garnier M G, Thommen V, Boyen H G, Oelhafen P, Duggelin M, Mathis D, Guggenheim R 2002 Appl. Phys. Lett. 80 2383

    [13]

    Kabir M S, Morjan R E, Nerushev O A, Lundgren P, Bengtsson S, Enokson P, Campbell E E B 2005 Nanotechnology 16 458

    [14]

    Sun X H, Li K, Wu R, Wilhite P, Saito T, Gao J, Yang C Y 2010 Nanotechnology 21 045201

    [15]

    Matsuda Y, Deng W Q, Goddard W A 2007 J. Phys. Chem. C 111 11113

计量
  • 文章访问数:  2497
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-16
  • 修回日期:  2012-08-31
  • 刊出日期:  2013-02-05

碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究

  • 1. 吉林大学材料科学与工程学院, 长春 130012;
  • 2. 长春大学理学院, 长春 130022;
  • 3. 吉林大学, 超硬材料国家重点实验室, 长春 130012
    基金项目: 

    国家自然科学基金 (批准号: 51002061, 51202017)

    吉林省自然科学基金 (批准号: 201115019, 201215104) 和吉林大学超硬材料国家重点实验室开放基金(批准号: 201215, 201110) 资助的课题.

摘要: 利用等离子体化学气相沉积技术, 在引入Ti过渡层后的Co膜表面一步制备出碳纳米片-碳纳米管复合材料, 研究了Co膜厚度对复合材料形貌及场发射性质的影响. 当Co薄膜厚度为11 nm时, 得到了垂直基片定向生长的碳纳米管和碳纳米片复合物, 此时, 碳纳米片分布在碳纳米管的管壁上和管的顶端, 样品的场发射性能最佳.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回