搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分方法的有限区域风场分解与重构I: 理论框架和仿真实验

赵延来 黄思训 杜华栋

引用本文:
Citation:

基于变分方法的有限区域风场分解与重构I: 理论框架和仿真实验

赵延来, 黄思训, 杜华栋

Wind partitioning and reconstruction with variational method in a limited domain I: theoretical frame and simulation experiments

Zhao Yan-Lai, Huang Si-Xun, Du Hua-Dong
PDF
导出引用
  • 众所周知, 风场分解与重构最有效的方法就是引入速度势和流函数, 其一般通过求解两个Poisson 方程得到. 由于速度势和流函数在边界上的耦合性质,有限区域风场分解是不唯一的, 这对风场分解带来了很大困难. 本文采用变分伴随结合正则化方法来克服风场分解的不唯一性, 其核心是把速度势和流函数的边值作为控制变量来反演. 目标泛函由两部分组成, 一是衡量重构风场误差大小的观测项; 二是保证风场分解问题适定的正则化项, 其目的在于寻求具有气象意义的稳定正则化解. 数值试验结果表明, 在正确选取正则化参数后, 利用变分伴随结合正则化方法进行有限区域风场分解与重构是有效可行的.
    As is well known, the efficient method to wind partitioning and reconstruction is to introduce the velocity potential and stream function which are calculated from divergence and vorticity by solving two Poisson's equations. Since velocity potential and stream function are coupled at the boundary of limited domain, the wind partitioning problem is nonunique. To vercome the nonuniqueness of the wind portioning, a new variational adjoint method combined with regularization is proposed in this paper, which is based on the control of velocity potential and stream function boundary values under Dirichlet conditions. The cost function is composed of two parts, one is the observation term to minimize the error of the reconstructed wind field, and the other is the regularization term to guarantee the uniqueness of the reconstruction problem by seeking a stable regularization solution within meteorological content. The results of numerical experiments demonstrate that after choosing an appropriate regularization parameter, the new variational adjoint method combined with regularization is efficient and suitable for wind portioning and reconstruction in a limited domain.
    • 基金项目: 国家自然科学基金 (批准号: 41175025, 41105012) 和国家科技支撑计划 (批准号: 2008BAC37B03) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41175025, 41105012) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2008BAC37B03).
    [1]

    Krishnamurti T, Ramanathan Y 1982 J. Atmos. Sci. 39 1290

    [2]

    Ran L K, Gao S T, Li C Y 1995 Chin. J. Atmos. Sci. 19 209 (in Chinese) [冉令坤, 高守亭, 李崇银 1995 大气科学 19 209]

    [3]

    Zhang L, Zhang L F, Wu H Y, Li G 2010 Acta Phys. Sin. 59 44 (in Chinese) [张亮, 张立凤, 吴海燕, 李刚 2010 物理学报 59 44]

    [4]

    Ding Y H, Hu G Q 2003 Acta Mete. Sin. 61 129 (in Chinese) [丁一汇, 胡国权 2003 气象学报 61 129]

    [5]

    Gao S T, Sun J H, Cui X P 2008 Chin. J. Atmos. Sci. 32 854 (in Chinese) [高守亭, 孙建华, 崔晓鹏 2008 大气科学 32 854]

    [6]

    Baede A P M, Jarraud M M, Cubasch U 1979 ECMWF Tech. Rep. 15 39

    [7]

    Bourke W 1974 Mon. Wea. Rev. 102 687

    [8]

    Phillips N A 1958 Geophysica 6 389

    [9]

    Sangster W E 1960 J. Atmos. Sci. 17 166

    [10]

    Shukla J, Saha K R 1974 Mon. Wea. Rev. 102 419

    [11]

    Stephens J, Johnson K 1978 Mon. Wea. Rev. 106 1452

    [12]

    Lynch P 1989 Mon. Wea. Rev. 117 1492

    [13]

    Bijlsma S J, Hafkensheid L M, Lynch P 1986 Mon. Wea. Rev. 114 1547

    [14]

    Chen Q S, Kuo Y H 1992 Mon. Wea. Rev. 120 91

    [15]

    Chen Q S, Kuo Y H 1992 Mon. Wea. Rev. 120 2653

    [16]

    Zhou Y S, Cao J, Gao S T 2008 Acta Phys. Sin. 57 6654 (in Chinese) [周玉淑, 曹洁, 高守亭 2008 物理学报 57 6654]

    [17]

    Zhou Y S, Cao J 2010 Acta Phys. Sin. 59 2898 (in Chinese) [周玉淑, 曹洁 2010 物理学报 59 2898]

    [18]

    Bishop H C 1996 J. Atmos. Sci. 53 241

    [19]

    Tikhonov A N, Arsenin V Y 1977 Solution of Ill-Posed Problems (New York: Winston and Sons) p224

    [20]

    Huang S X, Wu R S 2005 Mathematical and Physical Problems in Atmospheric Science (Beijing: Meteorological Press) p422 (in Chinese) [黄思训, 伍荣生 2005 大气科学中的数学物理问题 (北京: 气象出版社) 第422页]

    [21]

    Sheng Z, Huang S X 2010 Acta Phys. Sin. 59 1734 (in Chinese) [盛峥, 黄思训 2010 物理学报 59 1734]

    [22]

    Zhao Y L, Huang S X, Du H D, Zhong J Q 2011 Acta Phys. Sin. 60 079202 (in Chinese) [赵延来, 黄思训, 杜华栋, 仲跻芹 2011 物理学报 60 079202]

    [23]

    Li K T, Ma Y C 1990 Hilbert Space Methods for Mathematical Equation (Vol. 1) General Function and Sobolev Spaces (Xi'an: Xi'an Jiao- tong University Press) p222 (in Chinese) [李开泰, 马逸尘 1990 数理方程 Hilbert 空间方程方法(上)广义函数和Sobolev空间 (西安: 西安交通大学出版社) 第222页]

    [24]

    Le Dimet F X, Mohamed O 1993 Tellus A 45 449

    [25]

    Li Z J, Chao Y, McWilliams J C 2006 Mon. Wea. Rev. 134 3384

    [26]

    Kirsch A 1996 An Introduction to the Mathematical Theory of Inverse Problems (New York: Springer-Verlag) p48

    [27]

    Liu D C, Nocedal J 1989 Math. Program. 45 503

    [28]

    Engl H W 1987 J. Optim. Theory. Appl. 52 209

    [29]

    Barker D M, Huang W, Guo Y R, Bourgeois A J, Xiao Q N 2004 Mon. Wea. Rev. 132 897

  • [1]

    Krishnamurti T, Ramanathan Y 1982 J. Atmos. Sci. 39 1290

    [2]

    Ran L K, Gao S T, Li C Y 1995 Chin. J. Atmos. Sci. 19 209 (in Chinese) [冉令坤, 高守亭, 李崇银 1995 大气科学 19 209]

    [3]

    Zhang L, Zhang L F, Wu H Y, Li G 2010 Acta Phys. Sin. 59 44 (in Chinese) [张亮, 张立凤, 吴海燕, 李刚 2010 物理学报 59 44]

    [4]

    Ding Y H, Hu G Q 2003 Acta Mete. Sin. 61 129 (in Chinese) [丁一汇, 胡国权 2003 气象学报 61 129]

    [5]

    Gao S T, Sun J H, Cui X P 2008 Chin. J. Atmos. Sci. 32 854 (in Chinese) [高守亭, 孙建华, 崔晓鹏 2008 大气科学 32 854]

    [6]

    Baede A P M, Jarraud M M, Cubasch U 1979 ECMWF Tech. Rep. 15 39

    [7]

    Bourke W 1974 Mon. Wea. Rev. 102 687

    [8]

    Phillips N A 1958 Geophysica 6 389

    [9]

    Sangster W E 1960 J. Atmos. Sci. 17 166

    [10]

    Shukla J, Saha K R 1974 Mon. Wea. Rev. 102 419

    [11]

    Stephens J, Johnson K 1978 Mon. Wea. Rev. 106 1452

    [12]

    Lynch P 1989 Mon. Wea. Rev. 117 1492

    [13]

    Bijlsma S J, Hafkensheid L M, Lynch P 1986 Mon. Wea. Rev. 114 1547

    [14]

    Chen Q S, Kuo Y H 1992 Mon. Wea. Rev. 120 91

    [15]

    Chen Q S, Kuo Y H 1992 Mon. Wea. Rev. 120 2653

    [16]

    Zhou Y S, Cao J, Gao S T 2008 Acta Phys. Sin. 57 6654 (in Chinese) [周玉淑, 曹洁, 高守亭 2008 物理学报 57 6654]

    [17]

    Zhou Y S, Cao J 2010 Acta Phys. Sin. 59 2898 (in Chinese) [周玉淑, 曹洁 2010 物理学报 59 2898]

    [18]

    Bishop H C 1996 J. Atmos. Sci. 53 241

    [19]

    Tikhonov A N, Arsenin V Y 1977 Solution of Ill-Posed Problems (New York: Winston and Sons) p224

    [20]

    Huang S X, Wu R S 2005 Mathematical and Physical Problems in Atmospheric Science (Beijing: Meteorological Press) p422 (in Chinese) [黄思训, 伍荣生 2005 大气科学中的数学物理问题 (北京: 气象出版社) 第422页]

    [21]

    Sheng Z, Huang S X 2010 Acta Phys. Sin. 59 1734 (in Chinese) [盛峥, 黄思训 2010 物理学报 59 1734]

    [22]

    Zhao Y L, Huang S X, Du H D, Zhong J Q 2011 Acta Phys. Sin. 60 079202 (in Chinese) [赵延来, 黄思训, 杜华栋, 仲跻芹 2011 物理学报 60 079202]

    [23]

    Li K T, Ma Y C 1990 Hilbert Space Methods for Mathematical Equation (Vol. 1) General Function and Sobolev Spaces (Xi'an: Xi'an Jiao- tong University Press) p222 (in Chinese) [李开泰, 马逸尘 1990 数理方程 Hilbert 空间方程方法(上)广义函数和Sobolev空间 (西安: 西安交通大学出版社) 第222页]

    [24]

    Le Dimet F X, Mohamed O 1993 Tellus A 45 449

    [25]

    Li Z J, Chao Y, McWilliams J C 2006 Mon. Wea. Rev. 134 3384

    [26]

    Kirsch A 1996 An Introduction to the Mathematical Theory of Inverse Problems (New York: Springer-Verlag) p48

    [27]

    Liu D C, Nocedal J 1989 Math. Program. 45 503

    [28]

    Engl H W 1987 J. Optim. Theory. Appl. 52 209

    [29]

    Barker D M, Huang W, Guo Y R, Bourgeois A J, Xiao Q N 2004 Mon. Wea. Rev. 132 897

  • [1] 李宁, TuXin, 黄孝龙, 翁春生. 基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法. 物理学报, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [2] 刘杰, 张建勋, 代煜. 基于多引导滤波的图像增强算法. 物理学报, 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
    [3] 陈典兵, 朱明, 高文, 王慧利, 杨航. 基于残差矩阵估计的稀疏表示目标跟踪算法. 物理学报, 2016, 65(19): 194201. doi: 10.7498/aps.65.194201
    [4] 谢正超, 王飞, 严建华, 岑可法. 炉膛三维温度场重建中Tikhonov正则化和截断奇异值分解算法比较. 物理学报, 2015, 64(24): 240201. doi: 10.7498/aps.64.240201
    [5] 段晓亮, 王一博, 杨慧珠. 基于逆散射理论的地震波速度正则化反演. 物理学报, 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [6] 毛宝林, 陈晓朝, 孝大宇, 范晟昱, 滕月阳, 康雁. 基于全变分最小化和快速一阶方法的低剂量CT有序子集图像重建. 物理学报, 2014, 63(13): 138701. doi: 10.7498/aps.63.138701
    [7] 苏勇, 范东明, 游为. 利用GOCE卫星数据确定全球重力场模型. 物理学报, 2014, 63(9): 099101. doi: 10.7498/aps.63.099101
    [8] 刘广东, 张开银. 二维电磁逆散射问题的时域高斯-牛顿反演算法. 物理学报, 2014, 63(3): 034102. doi: 10.7498/aps.63.034102
    [9] 王新迎, 韩敏, 王亚楠. 含噪混沌时间序列预测误差分析. 物理学报, 2013, 62(5): 050504. doi: 10.7498/aps.62.050504
    [10] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [11] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导. 物理学报, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [12] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线. 物理学报, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [13] 龙智勇, 石汉青, 黄思训. 利用卫星云图反演云导风的新思路. 物理学报, 2011, 60(5): 059202. doi: 10.7498/aps.60.059202
    [14] 赵延来, 黄思训, 杜华栋, 仲跻芹. 正则化方法同化多普勒天气雷达资料及对降雨预报的影响. 物理学报, 2011, 60(7): 079202. doi: 10.7498/aps.60.079202
    [15] 姜祝辉, 黄思训, 何然, 周晨腾. 合成孔径雷达资料反演海面风场的正则化方法研究. 物理学报, 2011, 60(6): 068401. doi: 10.7498/aps.60.068401
    [16] 周玉淑, 曹洁. 有限区域风场的分解和重建. 物理学报, 2010, 59(4): 2898-2906. doi: 10.7498/aps.59.2898
    [17] 姜祝辉, 黄思训, 杜华栋, 刘博. 利用变分结合正则化方法对高度计风速资料调整海面风场的研究. 物理学报, 2010, 59(12): 8968-8977. doi: 10.7498/aps.59.8968
    [18] 刘广东, 张业荣. 二维有耗色散介质的时域逆散射方法. 物理学报, 2010, 59(10): 6969-6979. doi: 10.7498/aps.59.6969
    [19] 盛峥, 黄思训. 变分伴随正则化方法从雷达回波反演海洋波导(Ⅱ):实际反演试验. 物理学报, 2010, 59(6): 3912-3916. doi: 10.7498/aps.59.3912
    [20] 盛峥, 黄思训. 变分伴随正则化方法从雷达回波反演海洋波导(Ⅰ):理论推导部分. 物理学报, 2010, 59(3): 1734-1739. doi: 10.7498/aps.59.1734
计量
  • 文章访问数:  5552
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-09
  • 修回日期:  2012-09-04
  • 刊出日期:  2013-02-05

/

返回文章
返回