搜索

x
中国物理学会期刊

采用环形再生腔结构的飞秒激光啁啾脉冲放大研究

CSTR: 32037.14.aps.62.104211

A ring Ti:sapphire regenerative amplifier for high energy chirped pulse amplification

CSTR: 32037.14.aps.62.104211
PDF
导出引用
  • 采用环形再生腔结构的啁啾脉冲放大技术方案, 在重复频率100 Hz,单脉冲能量33.1 mJ的532 nm激光抽运下, 从钛宝石激光中获得了单脉冲能量9.84 mJ的放大输出, 对应的斜效率达33.1%.在重复频率10 Hz的情况下, 同样获得了单脉冲能量为9.64 mJ, 对应斜效率达36.8%的高效率放大结果. 通过色散补偿压缩该啁啾激光脉冲后的单脉冲能量为6.36 mJ, 脉冲宽度为59.7 fs. 测量结果表明典型的能量不稳定度为1.85%.

     

    Based on chirped-pulse amplification technology, a ring cavity Ti:sapphire regenerative amplifier with high output energy is demonstrated. Under the 532 nm pump energy of 33.1 mJ at a repetition rate of 100 Hz, the chirped laser pulse with energy of 9.84 mJ is obtained, corresponding to a slope efficiency of 33.1%. Instead, using the pump laser with energy of 32.0 mJ at a repetition rate of 10 Hz, we also obtain 9.64 mJ pulse energy with a corresponding slope efficiency of 36.8%. By optimizing the dispersion among all optical materials, stretcher and compressor, the shortest pulse has an energy of 6.36 mJ and a pulse width of 59.7 fs, and the energy fluctuation is 1.85 % (RMS) over 4000 shots after the compressor. The performances show that it may pave the way for ultrafast applications and serves as a front stage toward TW even PW laser system with high contrast ratio.

     

    目录

    /

    返回文章
    返回