-
采用晶体相场模型模拟获得了平均晶粒尺寸从11.6131.32 nm的纳米晶组织, 研究了单向拉伸过程纳米晶组织的强化规律的微观变形机理. 模拟结果表明: 晶粒转动、晶界迁移等晶间变形行为是纳米晶材料的主要微观变形方式, 纳米晶尺寸减小, 有利于晶粒转动, 使屈服强度降低, 显示出反霍尔-佩奇效应.当纳米晶较小时, 变形量超过屈服点达到4%, 位错运动开启, 其对变形的直接贡献有限, 主要通过改变晶界结构而影响变形行为, 位错运动破坏三叉晶界, 引发晶界弯曲, 促进晶界迁移. 随纳米晶增大, 晶粒转动困难, 出现晶界锯齿化并发射位错的现象.The nanocrystalline (NC) materials of several average grain sizes ranging from 11.61 to 31.32 nm were obtained by using the phase field crystal model (PFC), and the microscopic deformation mechanism of strengthening law for the uniaxial tensile deformation was discussed. Simulated results show that grain rotation and grain boundary (GB) migration are mainly responsible for the microscopic deformation. Since small grain size is favorable for grain rotation so that it can make the yield strength reduced; and the NC materials would show a reverse Hall-Petch effect. When the grain size is so small and the strain exceeds the yield point to about 4%, dislocation activities begin to occur. Mainly by the change of GB structure (disorganizing triple grain boundary junction and then promoting grain migration), the GB can play a finite contribution to deformation. With increasing grain size, grain rotation becomes difficult, and the grain serration and emission of dislocations are observed.
-
Keywords:
- phase field crystal /
- nanocrystalline materials /
- reverse Hall-Petch effect /
- microscopic deformation
[1] Siegel R W 1997 Mater. Sci. Forum. 235-238 851
[2] Sanders P G, Youngdahl C J, Weertman J R 1997 Mater. Sci. Eng. A 234-236 77
[3] Koch C C, Malow T R 1999 Mater. Sci. Forum 312-314 565
[4] Chokshi A H, Rosen A, Karch J, Gleiter H 1990 Scripta. Metall. Mater. 24 2319
[5] Hahn H, Mondal P, Padmanabhan K A 1997 Nanostruct. Mater. 9 603
[6] Lu L, Sui M L, Lu K 2000 Science 287 1463
[7] Mishra R S, Valiev R Z, Mukherjee A K 1997 Nanostruct. Mater. 9 473
[8] Zhou N G, Zhou L 2008 Acta Phys. Sin. 57 3064 (in Chinese) [周耐根, 周浪 2008 物理学报 57 3064]
[9] Wen Y H, Sun S G, Zhang Y, Zhu Z Z 2009 Acta Phys. Sin. 58 2589 (in Chinese) [文玉华, 孙世刚, 张扬, 朱梓忠 2004 物理学报 58 2589]
[10] Shao Y F, Wang S Q, 2010 Acta Phys. Sin. 59 7258 (in Chinese) [邵宇飞, 王绍青 2010 物理学报 59 7258]
[11] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[12] Elder K R, Grant M 2004 Phys. Rev. 70E 051605
[13] Chen L Q, Shen J 1998 Comput Phys. Commun. 108 147
[14] Hirouchi T, Takaki T 2009 Comput. Mater. Sci. 44 1192
-
[1] Siegel R W 1997 Mater. Sci. Forum. 235-238 851
[2] Sanders P G, Youngdahl C J, Weertman J R 1997 Mater. Sci. Eng. A 234-236 77
[3] Koch C C, Malow T R 1999 Mater. Sci. Forum 312-314 565
[4] Chokshi A H, Rosen A, Karch J, Gleiter H 1990 Scripta. Metall. Mater. 24 2319
[5] Hahn H, Mondal P, Padmanabhan K A 1997 Nanostruct. Mater. 9 603
[6] Lu L, Sui M L, Lu K 2000 Science 287 1463
[7] Mishra R S, Valiev R Z, Mukherjee A K 1997 Nanostruct. Mater. 9 473
[8] Zhou N G, Zhou L 2008 Acta Phys. Sin. 57 3064 (in Chinese) [周耐根, 周浪 2008 物理学报 57 3064]
[9] Wen Y H, Sun S G, Zhang Y, Zhu Z Z 2009 Acta Phys. Sin. 58 2589 (in Chinese) [文玉华, 孙世刚, 张扬, 朱梓忠 2004 物理学报 58 2589]
[10] Shao Y F, Wang S Q, 2010 Acta Phys. Sin. 59 7258 (in Chinese) [邵宇飞, 王绍青 2010 物理学报 59 7258]
[11] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[12] Elder K R, Grant M 2004 Phys. Rev. 70E 051605
[13] Chen L Q, Shen J 1998 Comput Phys. Commun. 108 147
[14] Hirouchi T, Takaki T 2009 Comput. Mater. Sci. 44 1192
计量
- 文章访问数: 10574
- PDF下载量: 858
- 被引次数: 0