搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于元胞自动机的复杂信息系统安全风险传播研究

李钊 徐国爱 班晓芳 张毅 胡正名

引用本文:
Citation:

基于元胞自动机的复杂信息系统安全风险传播研究

李钊, 徐国爱, 班晓芳, 张毅, 胡正名

Complex information system security risk propagation research based on cellular automata

Li Zhao, Xu Guo-Ai, Ban Xiao-Fang, Zhang Yi, Hu Zheng-Ming
PDF
导出引用
  • 基于元胞自动机建立复杂信息系统安全风险传播模型, 研究复杂信息系统安全风险在最近邻耦合网络、 随机网络, Watts-Strogatz 小世界网络和Barabasi-Albert无标度网络 四种网络拓扑下的传播问题. 通过研究安全风险传播模型在四种网络拓扑下安全风险的传播阈值, 与现有的传播阈值研究成果进行比较, 验证模型的正确性, 并分析验证网络拓扑结构中度分布的异质化程度越高传播阈值越小的结论. 通过对安全风险的传播演化趋势进行研究, 分析验证网络度分布的异质化程度越高、安全风险影响范围越小、传播速度越快的结论, 并指出度分布的异质化程度越高、模型后期的免疫机制对控制安全风险传播的效果越缓慢. 通过对安全风险在传播最早期就趋于消亡的情况进行研究, 分析得出安全风险在传播之初就趋于消亡的消亡率与传播率之间呈现近似负指数的关系, 并且初期的感染源越多安全风险的消亡率越低. 分析了影响复杂信息系统安全风险传播的关键要素, 对复杂信息系统中安全风险传播的控制具有指导作用.
    There models of complex information system security risk propagation are proposed in this paper based on cellular automata, and the probabilistic behaviors of security risk propagation in complex information systems are investigated by running the proposed models on nearest-neighbor coupled network, Erdos-Renyi random graph network, Watts-Strogatz small world network and Barabasi-Albert power law network respectively. Analysis and simulations show that the proposed models describe the behaviors of security risk propagation in the above four kinds of networks perfectly. By researching on the propagation threshold of security risks in four kinds of network topology and comparing with the existing research result, the correctness of the models is verified. The relationship between the heterogeneity of degree distribution and the value of the propagation threshold is analyzed and verified in this paper. Through the research on the evolutionary trends of security risk propagation, the relationship between the heterogeneity of degree distribution and the influence sphere and speed of security risk propagation is analyzed and verified as well. Meanwhile, the relationship between the heterogeneity of degree distribution and the effect of the immune mechanism on controlling security risk propagation is pointed out. Furthermore, the result of simulations describes the negative exponent relationship between security risk extinction rate and the propagation rate. The key factors affecting the security risk propagation are analyzed in this paper, providing the guidance for the control of security risk propagation in complex information systems.
    • 基金项目: 国家自然科学基金(批准号: 60970135, 61170282)、高等学校博士学科点专项科研基金 (批准号: 20120005110017)和国家科技支撑计划 (批准号: 2012BAH06B02)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60970135, 61170282), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120005110017), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAH06B02).
    [1]

    Feng D, Zhang Y, Zhang Y Q 2004 J. Commun. 25 10 (in Chinese) [冯登国, 张阳, 张玉清 2004 通信学报 25 10]

    [2]

    Zhang Y Z, Fang B X, Chi Y, Yun X C 2007 J. Software 18 137 (in Chinese) [张永铮, 方滨兴, 迟悦, 云晓春 2007 软件学报 18 137]

    [3]

    Kephart J O, White S R, Chess D M 1993 IEEE Spectrum 30 20

    [4]

    Okamura H, Kobayashi H, Dohi T 2005 Proceedings of the 16th IEEE International Symposium on Sof tware Reliability Engineering Chicago, IL, USA, November 8-11, 2005 p149

    [5]

    Zou C C, Towsley D, Gong W B 2007 IEEE Trans. Depend. Secure Comput. 4 105

    [6]

    Zou C C, Gong W, Towsley D 2002 Proceedings of the 9th ACM Conference on Computer and Communications Security Washington, DC, USA, November 18-22, 2002 p10

    [7]

    Song Y R, Jiang G P 2009 Acta Phys. Sin. 58 5911 (in Chinese) [宋玉荣, 蒋国平2009 物理学报 58 5911]

    [8]

    Wang Y Q, Jiang G P 2010 Acta Phys. Sin. 59 6724 (in Chinese) [王亚奇, 蒋国平2010 物理学报 59 6724]

    [9]

    Wang Y Q, Jiang G P 2011 Acta Phys. Sin. 60 080510 (in Chinese) [王亚奇, 蒋国平2011 物理学报 60 080510]

    [10]

    Jin Z, Liu Q X, Mainul H 2007 Chin. Phys. 16 1267

    [11]

    Fuentes M A, Kuperman M N 1999 Physica A 267 471

    [12]

    Sirakoulis G C, Karafyllidis I, Thanailakis A 2000 Ecol. Model. 133 209

    [13]

    White S H, del Rey A M, Sanchez G R 2009 Appl. Math. Sci. 3 959

    [14]

    Gagliardi H, Alves D 2010 Math. Popul. Stud. 17 79

    [15]

    Shan X M, Liu F, Ren Y 2002 Acta Phys. Sin. 51 1175 (in Chinese) [山秀明, 刘锋, 任勇2002 物理学报 51 1175]

    [16]

    Kong L J, Liu M R, L X Y 2001 Acta Phys. Sin. 50 1255 (in Chinese) [孔令江, 刘慕仁, 吕晓阳 2001 物理学报 50 1255]

    [17]

    Dai S Q, Dong L Y, Xue Y 2001 Acta Phys. Sin. 50 445 (in Chinese) [戴世强, 董力耘, 薛郁2001 物理学报 50 445]

    [18]

    Erdos P, Rnyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [19]

    Watts D J, Strogatz S H 1998 Nature 393 409

    [20]

    Barabsi A L, Albert R 1999 Science 286 509

    [21]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 035108

    [22]

    Chakrabarti D, Wang Y, Wang C 2007 ACM Trans. Inform. Syst. Secur. 10 1

    [23]

    Erdos P, Rnyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [24]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117

  • [1]

    Feng D, Zhang Y, Zhang Y Q 2004 J. Commun. 25 10 (in Chinese) [冯登国, 张阳, 张玉清 2004 通信学报 25 10]

    [2]

    Zhang Y Z, Fang B X, Chi Y, Yun X C 2007 J. Software 18 137 (in Chinese) [张永铮, 方滨兴, 迟悦, 云晓春 2007 软件学报 18 137]

    [3]

    Kephart J O, White S R, Chess D M 1993 IEEE Spectrum 30 20

    [4]

    Okamura H, Kobayashi H, Dohi T 2005 Proceedings of the 16th IEEE International Symposium on Sof tware Reliability Engineering Chicago, IL, USA, November 8-11, 2005 p149

    [5]

    Zou C C, Towsley D, Gong W B 2007 IEEE Trans. Depend. Secure Comput. 4 105

    [6]

    Zou C C, Gong W, Towsley D 2002 Proceedings of the 9th ACM Conference on Computer and Communications Security Washington, DC, USA, November 18-22, 2002 p10

    [7]

    Song Y R, Jiang G P 2009 Acta Phys. Sin. 58 5911 (in Chinese) [宋玉荣, 蒋国平2009 物理学报 58 5911]

    [8]

    Wang Y Q, Jiang G P 2010 Acta Phys. Sin. 59 6724 (in Chinese) [王亚奇, 蒋国平2010 物理学报 59 6724]

    [9]

    Wang Y Q, Jiang G P 2011 Acta Phys. Sin. 60 080510 (in Chinese) [王亚奇, 蒋国平2011 物理学报 60 080510]

    [10]

    Jin Z, Liu Q X, Mainul H 2007 Chin. Phys. 16 1267

    [11]

    Fuentes M A, Kuperman M N 1999 Physica A 267 471

    [12]

    Sirakoulis G C, Karafyllidis I, Thanailakis A 2000 Ecol. Model. 133 209

    [13]

    White S H, del Rey A M, Sanchez G R 2009 Appl. Math. Sci. 3 959

    [14]

    Gagliardi H, Alves D 2010 Math. Popul. Stud. 17 79

    [15]

    Shan X M, Liu F, Ren Y 2002 Acta Phys. Sin. 51 1175 (in Chinese) [山秀明, 刘锋, 任勇2002 物理学报 51 1175]

    [16]

    Kong L J, Liu M R, L X Y 2001 Acta Phys. Sin. 50 1255 (in Chinese) [孔令江, 刘慕仁, 吕晓阳 2001 物理学报 50 1255]

    [17]

    Dai S Q, Dong L Y, Xue Y 2001 Acta Phys. Sin. 50 445 (in Chinese) [戴世强, 董力耘, 薛郁2001 物理学报 50 445]

    [18]

    Erdos P, Rnyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [19]

    Watts D J, Strogatz S H 1998 Nature 393 409

    [20]

    Barabsi A L, Albert R 1999 Science 286 509

    [21]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 035108

    [22]

    Chakrabarti D, Wang Y, Wang C 2007 ACM Trans. Inform. Syst. Secur. 10 1

    [23]

    Erdos P, Rnyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [24]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117

  • [1] 苏臻, 高超, 李向华. 节点中心性对复杂网络传播模式的影响分析. 物理学报, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [2] 阮逸润, 老松杨, 王竣德, 白亮, 侯绿林. 一种改进的基于信息传播率的复杂网络影响力评估算法. 物理学报, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [3] 闵磊, 刘智, 唐向阳, 陈矛, 刘三(女牙). 基于扩展度的复杂网络传播影响力评估算法. 物理学报, 2015, 64(8): 088901. doi: 10.7498/aps.64.088901
    [4] 刘树新, 季新生, 刘彩霞, 郭虹. 一种信息传播促进网络增长的网络演化模型. 物理学报, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    [5] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [6] 任卓明, 刘建国, 邵凤, 胡兆龙, 郭强. 复杂网络中最小K-核节点的传播能力分析. 物理学报, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [7] 任刚, 陆丽丽, 王炜. 基于元胞自动机和复杂网络理论的双向行人流建模. 物理学报, 2012, 61(14): 144501. doi: 10.7498/aps.61.144501
    [8] 崔爱香, 傅彦, 尚明生, 陈端兵, 周涛. 复杂网络局部结构的涌现:共同邻居驱动网络演化. 物理学报, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [9] 李树彬, 吴建军, 高自友, 林勇, 傅白白. 基于复杂网络的交通拥堵与传播动力学分析. 物理学报, 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [10] 田昌海, 邓敏艺, 孔令江, 刘慕仁. 螺旋波动力学性质的元胞自动机有向小世界网络研究. 物理学报, 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
    [11] 宋玉蓉, 蒋国平, 徐加刚. 一种基于元胞自动机的自适应网络病毒传播模型. 物理学报, 2011, 60(12): 120509. doi: 10.7498/aps.60.120509
    [12] 王亚奇, 蒋国平. 基于元胞自动机考虑传播延迟的复杂网络病毒传播研究. 物理学报, 2011, 60(8): 080510. doi: 10.7498/aps.60.080510
    [13] 王亚奇, 蒋国平. 复杂网络中考虑不完全免疫的病毒传播研究. 物理学报, 2010, 59(10): 6734-6743. doi: 10.7498/aps.59.6734
    [14] 梅超群, 黄海军, 唐铁桥. 城市快速路系统的元胞自动机模型与分析. 物理学报, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [15] 宋玉蓉, 蒋国平. 基于一维元胞自动机的复杂网络恶意软件传播研究. 物理学报, 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [16] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究. 物理学报, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究. 物理学报, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [18] 周华亮, 高自友, 李克平. 准移动闭塞系统的元胞自动机模型及列车延迟传播规律的研究. 物理学报, 2006, 55(4): 1706-1710. doi: 10.7498/aps.55.1706
    [19] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型. 物理学报, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [20] 刘锋, 任勇, 山秀明. 互联网络数据包传输的一种简单元胞自动机模型. 物理学报, 2002, 51(6): 1175-1180. doi: 10.7498/aps.51.1175
计量
  • 文章访问数:  5525
  • PDF下载量:  1071
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-02
  • 修回日期:  2013-06-17
  • 刊出日期:  2013-10-05

/

返回文章
返回