搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BN链掺杂的石墨烯纳米带的电学及磁学特性

王鼎 张振华 邓小清 范志强

引用本文:
Citation:

BN链掺杂的石墨烯纳米带的电学及磁学特性

王鼎, 张振华, 邓小清, 范志强

Electrical and magnetic properties of graphene nanoribbons with BN-chain doping

Wang Ding, Zhang Zhen-Hua, Deng Xiao-Qing, Fan Zhi-Qiang
PDF
导出引用
  • 基于密度泛函理论第一性原理系统研究了BN链掺杂石墨烯纳米带(GNRs)的电学及磁学特性, 对锯齿型石墨烯纳米带(ZGNRs)分非磁态(NM)、反铁磁态(AFM)及铁磁性(FM)三种情况分别进行考虑. 重点研究了单个BN链掺杂的位置效应. 计算发现: BN链掺杂扶手椅型石墨烯纳米带(AGNRs) 能使带隙增加, 不同位置的掺杂, 能使其成为带隙丰富的半导体. BN链掺杂非磁态ZGNR的不同位置, 其金属性均降低, 并能出现准金属的情况; BN链掺杂反铁磁态ZGNR, 能使其从半导体变为金属或半金属(half-metal), 这取决于掺杂的位置; BN链掺杂铁磁态ZGNR, 其金属性保持不变, 与掺杂位置无关. 这些结果表明: BN链掺杂能有效调控石墨烯纳米带的电子结构, 并形成丰富的电学及磁学特性, 这对于发展各种类型的石墨烯基纳米电子器件有重要意义.
    By using the first-principles method based on the density-functional theory, electrical and magnetic properties of graphene nanoribbons (GNRs) with the BN-chain doping are systematically studied. For the zigzag-edge graphene nanoribbon (ZGNR), its multispin-state properties: spin-unpolarized non-magnetism (NM) state, spin-polarized ferromagnetic (FM), and anti-ferromagnetic (AFM) states, are considered. The emphasis on our investigations is the effect of doping position for a single BN-chain. It is found that the BN-chain doping armchair-edge graphene nanoribbon (AGNR) has an increase in bandgap and becomes semiconductors with various different bandgaps upon the doping positions. When the ZGNR at the NM state is doped by the BN-chain, its metallic property is weakened, and the quasi-metallic property can also occur. The BN-chain doping ZGNR at the AFM state makes it change from a semiconductor to a metal or half-metal, depending on doping positions. And the BN-chain doping ZGNR at the FM state always keeps its metallic property unchanged regardless of the doping positions. These results indicate that the BN-chain doping can effectively modulate the electronic structure to form abundant electrical and magnetic properties for GNRs. It is of important significance for developing various kinds of nanodevices based on GNRs.
    • 基金项目: 国家自然科学基金(批准号: 61371065, 61071015, 61101009, 61201080)、湖南省教育厅重点资助科研项目(批准号: 12A001)、湖南省高校科技创新团队支持计划和湖南省重点学科建设项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61371065, 61071015, 61101009, 61201080), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 12A001), the Science and Technology Innovation Team in Colleges and Universities of Hunan Province, China, and the Construct Program of the Key Discipline in Hunan Province, China.
    [1]

    Noveselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonosn S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 物理学报 58 7156]

    [3]

    Han M, Zhang Y, Zheng H B 2010 Chin. Phys. Lett. 27 037302

    [4]

    Ouyang F P, Chen L J, Xiao J, Zhang H 2011 Chin. Phys. Lett. 28 047304

    [5]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 物理学报 60 047102]

    [6]

    Oswald W, Wu Z G 2012 Phys. Rev. B 85 115431

    [7]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [8]

    Faccion R, Werner L F, Pardo H, Goyenola C, Ventura O N, Mombru A W 2010 J. Phys. Chem. C 114 18961

    [9]

    Fang Z Q, Xie F 2012 Acta Phys. Sin. 61 077303 (in Chinese) [范志强, 谢芳 2012 物理学报 61 077303]

    [10]

    Liu Z M, Zhu Y, Yang Z Q 2011 J. Chem. Phys. 134 074708

    [11]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, Ouyang F P 2012 Chin. Phys. B 21 027102

    [12]

    Xiao H P, Chen Y P, Xie Y E, Ouyang T, Zhang Y, Zhong J X 2012 J. Appl. Phys. 122 113713

    [13]

    Tang G P, Zhou J C, Deng X Q, Fan Z Q 2012 Appl. Phys. Lett. 101 023104

    [14]

    Ni Z Y, Liu Q H, Tang K C, Zhen J X, Zhou J, Qin R, Gao Z X, Yu D P, Lu J 2012 Nano Lett. 12 113

    [15]

    Kan E J, Li Z Y, Yang J L, Hou J G 2007 Appl. Phys. Lett. 91 234116

    [16]

    Ozcelik V O, Ciraci S 2012 Phys. Rev. B 86 155421

    [17]

    Liang G, Neophytou N, Lundstrom M S, Nikonov D E 2007 IEEE Trans. Electron Dev. 54 4

    [18]

    Mao J H, Zhang H G, Liu Q, Shi D X, Gao H J 2009 Physics 38 378 (in Chinese) [毛金海, 张海刚, 刘奇, 时东霞, 高鸿钧 2009 物理 38 378]

    [19]

    Jin C, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [20]

    Han W Q, Wu L, Zhu Y, Watanabe K, Taniguchi T 2008 Appl. Phys. Lett. 93 223103

    [21]

    Du A J, Smith S C, Lu G Q 2007 Chem. Phys. Lett. 447 181

    [22]

    Wang D J 2013 Acta Phys. Sin. 62 057302 (in Chinese) [王道俊 2013 物理学报 62 057302]

    [23]

    Ci L J, Jin C H, Jariwala D, Wu D X, Li Y J, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nature Mater. 9 430

    [24]

    Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437

    [25]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [26]

    Dong J C, Li H 2012 J. Phys. Chem. C 116 17259

    [27]

    Qiu M, Liew K M 2013 J. Appl. Phys. 113 054305

    [28]

    Xiao H P, Chen Y P, Xie Y E, Ouyang T, Zhang Y, Zhong J X 2012 J. Appl. Phys. 112 113713

    [29]

    Taylor J, Guo H, Wang 2001 J. Phys. Rev. B 63 245407

    [30]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [31]

    Zeng J, Chen K Q 2012 Chem. Phys. 14 8032

    [32]

    Li Z Y, Qian H Y, Wu J, Gu B L, Duan W H 2008 Phys. Rev. Lett. 100 206802.

    [33]

    Zheng X H, Lan J, Wang X L, Huang L F, Hao H, Zeng Z 2012 Appl. Phys. Lett. 101 053101

    [34]

    Zheng H X, Duley W 2008 Phys. Rev. B 78 045421

    [35]

    Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y, 2009 Nano Lett. 9 220

    [36]

    Rojas F M, Rossier J F, Palacios J J 2009 Phys. Rev. Lett. 102 136810

    [37]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [38]

    Sepioni M, Nair R R, Rablen S, Narayanan J, Tuna F, Winpenny R, Geim A K, Grigorieva I V 2010 Phys. Rev. Lett. 105 207205

    [39]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [40]

    Areshkin D A, White C T 2007 Nano Lett. 7 3253

  • [1]

    Noveselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonosn S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 物理学报 58 7156]

    [3]

    Han M, Zhang Y, Zheng H B 2010 Chin. Phys. Lett. 27 037302

    [4]

    Ouyang F P, Chen L J, Xiao J, Zhang H 2011 Chin. Phys. Lett. 28 047304

    [5]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 物理学报 60 047102]

    [6]

    Oswald W, Wu Z G 2012 Phys. Rev. B 85 115431

    [7]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [8]

    Faccion R, Werner L F, Pardo H, Goyenola C, Ventura O N, Mombru A W 2010 J. Phys. Chem. C 114 18961

    [9]

    Fang Z Q, Xie F 2012 Acta Phys. Sin. 61 077303 (in Chinese) [范志强, 谢芳 2012 物理学报 61 077303]

    [10]

    Liu Z M, Zhu Y, Yang Z Q 2011 J. Chem. Phys. 134 074708

    [11]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, Ouyang F P 2012 Chin. Phys. B 21 027102

    [12]

    Xiao H P, Chen Y P, Xie Y E, Ouyang T, Zhang Y, Zhong J X 2012 J. Appl. Phys. 122 113713

    [13]

    Tang G P, Zhou J C, Deng X Q, Fan Z Q 2012 Appl. Phys. Lett. 101 023104

    [14]

    Ni Z Y, Liu Q H, Tang K C, Zhen J X, Zhou J, Qin R, Gao Z X, Yu D P, Lu J 2012 Nano Lett. 12 113

    [15]

    Kan E J, Li Z Y, Yang J L, Hou J G 2007 Appl. Phys. Lett. 91 234116

    [16]

    Ozcelik V O, Ciraci S 2012 Phys. Rev. B 86 155421

    [17]

    Liang G, Neophytou N, Lundstrom M S, Nikonov D E 2007 IEEE Trans. Electron Dev. 54 4

    [18]

    Mao J H, Zhang H G, Liu Q, Shi D X, Gao H J 2009 Physics 38 378 (in Chinese) [毛金海, 张海刚, 刘奇, 时东霞, 高鸿钧 2009 物理 38 378]

    [19]

    Jin C, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [20]

    Han W Q, Wu L, Zhu Y, Watanabe K, Taniguchi T 2008 Appl. Phys. Lett. 93 223103

    [21]

    Du A J, Smith S C, Lu G Q 2007 Chem. Phys. Lett. 447 181

    [22]

    Wang D J 2013 Acta Phys. Sin. 62 057302 (in Chinese) [王道俊 2013 物理学报 62 057302]

    [23]

    Ci L J, Jin C H, Jariwala D, Wu D X, Li Y J, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nature Mater. 9 430

    [24]

    Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437

    [25]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P 2010 Appl. Phys. Lett. 97 193305

    [26]

    Dong J C, Li H 2012 J. Phys. Chem. C 116 17259

    [27]

    Qiu M, Liew K M 2013 J. Appl. Phys. 113 054305

    [28]

    Xiao H P, Chen Y P, Xie Y E, Ouyang T, Zhang Y, Zhong J X 2012 J. Appl. Phys. 112 113713

    [29]

    Taylor J, Guo H, Wang 2001 J. Phys. Rev. B 63 245407

    [30]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [31]

    Zeng J, Chen K Q 2012 Chem. Phys. 14 8032

    [32]

    Li Z Y, Qian H Y, Wu J, Gu B L, Duan W H 2008 Phys. Rev. Lett. 100 206802.

    [33]

    Zheng X H, Lan J, Wang X L, Huang L F, Hao H, Zeng Z 2012 Appl. Phys. Lett. 101 053101

    [34]

    Zheng H X, Duley W 2008 Phys. Rev. B 78 045421

    [35]

    Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y, 2009 Nano Lett. 9 220

    [36]

    Rojas F M, Rossier J F, Palacios J J 2009 Phys. Rev. Lett. 102 136810

    [37]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [38]

    Sepioni M, Nair R R, Rablen S, Narayanan J, Tuna F, Winpenny R, Geim A K, Grigorieva I V 2010 Phys. Rev. Lett. 105 207205

    [39]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133

    [40]

    Areshkin D A, White C T 2007 Nano Lett. 7 3253

  • [1] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] 崔兴倩, 刘乾, 范志强, 张振华. 氧气分子吸附对单蒽分子器件自旋输运性质调控. 物理学报, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [3] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [4] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [6] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [7] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [8] 张华林, 孙琳, 王鼎. 含单排线缺陷锯齿型石墨烯纳米带的电磁性质. 物理学报, 2016, 65(1): 016101. doi: 10.7498/aps.65.016101
    [9] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [10] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响. 物理学报, 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [11] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [12] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [13] 马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力. 机械剥离法制备石墨烯纳米带及其低温电输运性质研究. 物理学报, 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [14] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [15] 程莉, 汪丽莉, 蒲十周, 胡妮, 张悦, 刘雍, 魏伟, 熊锐, 石兢. 磁性和非磁性元素掺杂的自旋梯状化合物Sr14(Cu0.97M0.03)24O41(M=Zn, Ni, Co)的结构和电输运性质. 物理学报, 2010, 59(2): 1155-1162. doi: 10.7498/aps.59.1155
    [16] 欧阳方平, 徐慧, 林峰. 双空位缺陷石墨纳米带的电子结构和输运性质研究. 物理学报, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [17] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [18] 欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 单空位缺陷对石墨纳米带电子结构和输运性质的影响. 物理学报, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [19] 曾 晖, 胡慧芳, 韦建卫, 谢 芳, 彭 平. 含有五边形—七边形缺陷的单壁纳米碳管的输运性质研究. 物理学报, 2006, 55(9): 4822-4827. doi: 10.7498/aps.55.4822
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  7719
  • PDF下载量:  918
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-16
  • 修回日期:  2013-07-26
  • 刊出日期:  2013-10-05

/

返回文章
返回