搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析

佟国香 李毅 王锋 黄毅泽 方宝英 王晓华 朱慧群 梁倩 严梦 覃源 丁杰 陈少娟 陈建坤 郑鸿柱 袁文瑞

引用本文:
Citation:

磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析

佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞

Preparation of W-doped VO2/FTO composite thin films by DC magnetron sputtering and characterization analyses of the films

Tong Guo-Xiang, Li Yi, Wang Feng, Huang Yi-Ze, Fang Bao-Ying, Wang Xiao-Hua, Zhu Hui-Qun, Liang Qian, Yan Meng, Qin Yuan, Ding Jie, Chen Shao-Juan, Chen Jian-Kun, Zheng Hong-Zhu, Yuan Wen-Rui
PDF
导出引用
  • 为了获得相变温度低且热致变色性能优越的光学材料, 室温下在F:SnO2 (FTO)导电玻璃基板表面沉积钨钒金属膜, 再经空气气氛下的热氧化处理, 制备了W掺杂VO2/FTO复合薄膜, 利用X射线光电子能谱、X射线衍射和扫描电镜对薄膜的结构和表面形貌进行了分析. 结果表明: 高温热氧化处理过程中没有生成W, F, V混合氧化物, W以替换V原子的方式掺杂. 与采用相同工艺和条件制备的纯VO2/FTO复合薄膜相比, W掺杂VO2薄膜没有改变晶面取向, 仍具有(110)晶面择优取向, 相变温度下降到35 ℃左右, 热滞回线收窄到4 ℃, 高低温下的近红外光透过率变化量提高到28%. 薄膜的结晶程度明显提高, 表面变得平滑致密, 具有很好的一致性, 对光电薄膜器件的设计开发和工业化生产具有重要意义.
    In order to obtain low phase transition temperature and superior thermochromic optical material, W-doped VO2/FTO composite thin films are prepared by depositing metallic vanadium on FTO (F:SnO2) conductive glass substrate in argon atmosphere at room temperature and then annealed in air ambient. XPS, XRD and SEM are used for analyzing the structures and surface morphologies of the films. The results indicate that no mixed oxides of V, W and F are produced during high-temperature thermal oxidation. W is doped by replacing V atoms. Compared with the pure VO2/FTO composite thin film prepared using the same process, the crystal orientation of W-doped VO2 thin film is not changed and still retains preferred crystal orientation in the (110) direction. The phase transition temperature drops down to about 35 ℃, and the thermal hysteresis loop narrows to 4 ℃. The variation of IR transmittance between the high temperature and the low temperature reaches 28%. SEM results show that the crystallinity of the thin film is improved significantly, showing smooth, compact and uniform surface morphology. This brings about many new opportunities for optoelectronic devices and industrial production.
    • 基金项目: 国家高技术研究发展计划(批准号: 2006AA03Z348)、教育部科学技术研究重点项目(批准号: 207033)、上海市教委科学技术研究重点项目(批准号: 10ZZ94)、上海市重点学科(批准号: S30502)、上海市教委科研创新项目(批准号: 12YZ094)、上海市领军人才计划和"区域光纤通信网与新型光通信系统国家重点实验室"开放基金资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z348), the Foundation for Key Program of Ministry of Education China (Grant No. 207033), the Key Science and Technology Research Project of Shanghai Committee, China (Grant No. 10ZZ94), the Shanghai Leading Academic Discipline Project, China (Grant No. S30502), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No.12YZ094), the Shanghai Talent Leading Plan, China, and the State Key Laboratory of Advanced Optical Communication Systems and Networks, China.
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lu S W, Hou L S, Gan F X 1999 Thin Solid Films 353 40

    [3]

    Burkhardt W, Christmann T, Meyer B K, Niessner W, Schalch D, Scharmann A 1999 Thin Solid Films 345 229

    [4]

    Gherida M, Vincent H, Marezio M, Launay J L 1977 J. Solid State Chem. 22 423

    [5]

    Villeneuve G, Bordet A, Casalot A, Hagenmuller P 1971 Mater. Res. Bull. 6 119

    [6]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [7]

    Burkhardt W, Christmann T, Franke S, Kriegseis W, Merster D, Meyer B K, Niessner W, Schalch D, Scharmann A 2002 Thin Solid Films 402 226

    [8]

    Soltani M, Chaker M, Haddad E, Kruzelecky RV, Margot J 2004 Appl. Phys. Lett. 85 1958

    [9]

    Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R 2004 Thin Solid Films 446 287

    [10]

    Li J H, Yuan N Y, Xie T B, Dan D D 2007 Acta Phys. Sin. 56 1794 (in Chinese) [李金华, 袁宁一, 谢太斌, 但迪迪 2007 物理学报 56 1794]

    [11]

    Soltani M, Chaker M 2004 J. Vac. Sci. Technol. A 22 859

    [12]

    Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Huang Y Z, Li L, Shen Y J, Zhen Q X, Tong G X, Fang B Y 2012 Surf. Coat. Technol. 206 2922.

    [13]

    Suzuki H, Yamaguchi K, Miyazaki H 2007 Compos. Sci. Technol. 67 1617

    [14]

    Saitzek S, Guinneton F, Sauques L, Aguir K, Gavarri J R 2007 Opt. Mater. 30 407

    [15]

    Xu G, Jin P, Tazawa M, Yoshimura K 2004 Sol. Energy Mater. Sol. Cells 83 29

    [16]

    Brook L A, Evans P, Foster H A, Pemble M E, Steele A, Sheel D W, Yates H M 2007 J. Photochem. Photobiol. A: Chemistry 187 53

    [17]

    Duchene J, Terraillon M, Pailly P, Adam G 1971 Appl. Phys. Lett. 19 115

    [18]

    Fisher B 1975 J. Phys. C 8 2072

    [19]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76

    [20]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2010 J. Appl. Phys. 107 094305

    [21]

    Okimura K, Ezreena N, Sasakawa Y, Sakai J 2009 Jpn. J. Appl. Phys. 48 065003

    [22]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837

    [23]

    Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101

    [24]

    Ruzmetov D, Gopalakrishnan G, Deng J D, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [25]

    Yang Z, Ko C, Ramanathan S 2010 J. Appl. Phys. 108 073708

    [26]

    Lee M J, Park Y, Suh D S, Lee E H, Seo S, Kim D C, Jung R, Kang B S, Ahn S E, Lee C B, Seo D H, Cha Y K, Yoo I K, Kim J S, Park B H 2007 Adv. Mater. 19 3919

    [27]

    Yang T H, Jin C M, Zhou H H, Narayan R J, Narayan J 2010 Appl. Phys. Lett. 97 702101

    [28]

    Heinilehto S T, Lappalainen J H, Jantunen H M, Lantto V 2011 J. Electroceram 27 7

    [29]

    Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 物理学报 60 098104]

    [30]

    Bowman R M, Gregg J M 1998 J. Mater. Sci: Mater. Electron. 9 187

    [31]

    Atrei A, Bardi U, Tarducci C, Rovida G 2000 J. Phys. Chem. B 104 3121

    [32]

    Continenza A, Massidda S, Posternak M 1999 Phys. Rev. B 60 15699

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lu S W, Hou L S, Gan F X 1999 Thin Solid Films 353 40

    [3]

    Burkhardt W, Christmann T, Meyer B K, Niessner W, Schalch D, Scharmann A 1999 Thin Solid Films 345 229

    [4]

    Gherida M, Vincent H, Marezio M, Launay J L 1977 J. Solid State Chem. 22 423

    [5]

    Villeneuve G, Bordet A, Casalot A, Hagenmuller P 1971 Mater. Res. Bull. 6 119

    [6]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [7]

    Burkhardt W, Christmann T, Franke S, Kriegseis W, Merster D, Meyer B K, Niessner W, Schalch D, Scharmann A 2002 Thin Solid Films 402 226

    [8]

    Soltani M, Chaker M, Haddad E, Kruzelecky RV, Margot J 2004 Appl. Phys. Lett. 85 1958

    [9]

    Guinneton F, Sauques L, Valmalette J C, Cros F, Gavarri J R 2004 Thin Solid Films 446 287

    [10]

    Li J H, Yuan N Y, Xie T B, Dan D D 2007 Acta Phys. Sin. 56 1794 (in Chinese) [李金华, 袁宁一, 谢太斌, 但迪迪 2007 物理学报 56 1794]

    [11]

    Soltani M, Chaker M 2004 J. Vac. Sci. Technol. A 22 859

    [12]

    Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Huang Y Z, Li L, Shen Y J, Zhen Q X, Tong G X, Fang B Y 2012 Surf. Coat. Technol. 206 2922.

    [13]

    Suzuki H, Yamaguchi K, Miyazaki H 2007 Compos. Sci. Technol. 67 1617

    [14]

    Saitzek S, Guinneton F, Sauques L, Aguir K, Gavarri J R 2007 Opt. Mater. 30 407

    [15]

    Xu G, Jin P, Tazawa M, Yoshimura K 2004 Sol. Energy Mater. Sol. Cells 83 29

    [16]

    Brook L A, Evans P, Foster H A, Pemble M E, Steele A, Sheel D W, Yates H M 2007 J. Photochem. Photobiol. A: Chemistry 187 53

    [17]

    Duchene J, Terraillon M, Pailly P, Adam G 1971 Appl. Phys. Lett. 19 115

    [18]

    Fisher B 1975 J. Phys. C 8 2072

    [19]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76

    [20]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2010 J. Appl. Phys. 107 094305

    [21]

    Okimura K, Ezreena N, Sasakawa Y, Sakai J 2009 Jpn. J. Appl. Phys. 48 065003

    [22]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837

    [23]

    Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101

    [24]

    Ruzmetov D, Gopalakrishnan G, Deng J D, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [25]

    Yang Z, Ko C, Ramanathan S 2010 J. Appl. Phys. 108 073708

    [26]

    Lee M J, Park Y, Suh D S, Lee E H, Seo S, Kim D C, Jung R, Kang B S, Ahn S E, Lee C B, Seo D H, Cha Y K, Yoo I K, Kim J S, Park B H 2007 Adv. Mater. 19 3919

    [27]

    Yang T H, Jin C M, Zhou H H, Narayan R J, Narayan J 2010 Appl. Phys. Lett. 97 702101

    [28]

    Heinilehto S T, Lappalainen J H, Jantunen H M, Lantto V 2011 J. Electroceram 27 7

    [29]

    Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 物理学报 60 098104]

    [30]

    Bowman R M, Gregg J M 1998 J. Mater. Sci: Mater. Electron. 9 187

    [31]

    Atrei A, Bardi U, Tarducci C, Rovida G 2000 J. Phys. Chem. B 104 3121

    [32]

    Continenza A, Massidda S, Posternak M 1999 Phys. Rev. B 60 15699

  • [1] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [2] 王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇. V掺杂ZnO透明导电薄膜研究. 物理学报, 2016, 65(8): 087802. doi: 10.7498/aps.65.087802
    [3] 王雅琴, 姚刚, 黄子健, 黄鹰. 用于红外激光防护的高开关率VO2薄膜. 物理学报, 2016, 65(5): 057102. doi: 10.7498/aps.65.057102
    [4] 陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良. 外加磁场对射频磁控溅射制备铝掺杂氧化锌薄膜影响的研究. 物理学报, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [5] 袁文瑞, 李毅, 王晓华, 郑鸿柱, 陈少娟, 陈建坤, 孙瑶, 唐佳茵, 刘飞, 郝如龙, 方宝英, 肖寒. VO2/AZO复合薄膜的制备及其光电特性研究. 物理学报, 2014, 63(21): 218101. doi: 10.7498/aps.63.218101
    [6] 郑树文, 范广涵, 何苗, 赵灵智. W掺杂对β-Ga2O3导电性能影响的理论研究. 物理学报, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [7] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [8] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响. 物理学报, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [9] 王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹. W掺杂ZnO透明导电薄膜的理论及实验研究. 物理学报, 2012, 61(13): 137801. doi: 10.7498/aps.61.137801
    [10] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜. 物理学报, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [11] 张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华. 衬底温度对反应磁控溅射W掺杂ZnO薄膜的微观结构及光电性能的影响. 物理学报, 2012, 61(23): 238101. doi: 10.7498/aps.61.238101
    [12] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [13] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [14] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究. 物理学报, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [15] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [16] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [17] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [18] 胡 冰, 李晓娜, 董 闯, 姜 辛. 磁控溅射法合成纳米β-FeSi2/a-Si多层结构. 物理学报, 2007, 56(12): 7188-7194. doi: 10.7498/aps.56.7188
    [19] 杨 帅, 李养贤, 马巧云, 徐学文, 牛萍娟, 李永章, 牛胜利, 李洪涛. FTIR研究快中子辐照直拉硅中的VO2. 物理学报, 2005, 54(5): 2256-2260. doi: 10.7498/aps.54.2256
    [20] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
计量
  • 文章访问数:  3899
  • PDF下载量:  1048
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-09
  • 修回日期:  2013-07-04
  • 刊出日期:  2013-10-05

磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析

  • 1. 上海理工大学光电信息与计算机工程学院, 上海 200093;
  • 2. 上海市现代光学系统重点实验室, 上海 200093;
  • 3. 上海电力学院计算机与信息工程学院, 上海 200090
    基金项目: 国家高技术研究发展计划(批准号: 2006AA03Z348)、教育部科学技术研究重点项目(批准号: 207033)、上海市教委科学技术研究重点项目(批准号: 10ZZ94)、上海市重点学科(批准号: S30502)、上海市教委科研创新项目(批准号: 12YZ094)、上海市领军人才计划和"区域光纤通信网与新型光通信系统国家重点实验室"开放基金资助的课题.

摘要: 为了获得相变温度低且热致变色性能优越的光学材料, 室温下在F:SnO2 (FTO)导电玻璃基板表面沉积钨钒金属膜, 再经空气气氛下的热氧化处理, 制备了W掺杂VO2/FTO复合薄膜, 利用X射线光电子能谱、X射线衍射和扫描电镜对薄膜的结构和表面形貌进行了分析. 结果表明: 高温热氧化处理过程中没有生成W, F, V混合氧化物, W以替换V原子的方式掺杂. 与采用相同工艺和条件制备的纯VO2/FTO复合薄膜相比, W掺杂VO2薄膜没有改变晶面取向, 仍具有(110)晶面择优取向, 相变温度下降到35 ℃左右, 热滞回线收窄到4 ℃, 高低温下的近红外光透过率变化量提高到28%. 薄膜的结晶程度明显提高, 表面变得平滑致密, 具有很好的一致性, 对光电薄膜器件的设计开发和工业化生产具有重要意义.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回