搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强流脉冲电子束辐照诱发纯钼表面的损伤效应及结构缺陷

季乐 杨盛志 蔡杰 李艳 王晓彤 张在强 侯秀丽 关庆丰

引用本文:
Citation:

强流脉冲电子束辐照诱发纯钼表面的损伤效应及结构缺陷

季乐, 杨盛志, 蔡杰, 李艳, 王晓彤, 张在强, 侯秀丽, 关庆丰

Damage and structural defects in the surface lager of pure molybdenum induced by high-current pulsed electron beam

Ji Le, Yang Sheng-Zhi, Cai Jie, Li Yan, Wang Xiao-Tong, Zhang Zai-Qiang, Hou Xiu-Li, Guan Qing-Feng
PDF
导出引用
  • 利用强流脉冲电子束(HCPEB)装置对纯钼表面进行辐照处理,并利用X射线衍射仪,扫描电子显微镜(SEM)、透射电子显微镜(TEM)详细分析了辐照表面的微观结构和损伤效应. 1次HCPEB辐照后,纯钼表层积聚了极大的残余应力,多次辐照后表面未融化区域出现大量绝热剪切带,且局部区域发生开裂. 微观结构分析显示,辐照后材料表面形成发散状的位错组态和大量空位簇缺陷;绝热剪切带内部是尺寸为1 μm 左右等轴状的再结晶晶粒. 剪切带造成的材料表面局部软化以及间隙原子偏聚于晶界是材料发生开裂的主要原因. 另外,表面熔化区域可形成尺寸为20 nm左右的纳米晶.
    High-current pulsed electron beam (HCPEB) technique was applied to induce the surface irradiation of pure molybdenum. Microstructures and damaging effect of the irradiated surface were investigated in detail by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After 1 pulse of HCPEB irradiation, a high level of residual stress is amassed in the irradiated surface layer, while after several pulses of irradiation, a large number of adiabatic shear bands are formed on the unmelted regions of the surface, and local cracking occurs in these regions. Microstructure observations show that scattered dislocations and large amounts of vacancy clusters are formed on the irradiated surface. The adiabatic shear bands are composed of fine recrystallized grains with an average size about 1 μm. The partial softening of the irradiated surface induced by adiabatic shear bands, and the segregation of interstitial atoms in grain boundaries are primarily responsible for the surface cracking of the material. Further, nanocrystallines (20 nm) are also formed in some melted regions of the surface.
    • 基金项目: 国家自然科学基金委员会-中国民用航空局联合基金(批准号:U1233111)资助的课题.
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the Civil Aviation Administration of China (Grant No. U1233111).
    [1]

    Proskurovsky D I, Rotshtein V P, Ozur G E, Markov A B, Nazarov D S 1998 J. Vac. Sci. Technol. A 16 2480

    [2]

    Ma X X, Guo G W, Tang G Z, Sun M R, Wang L Q 2013 Chin. Phys. B 22 056202

    [3]

    Guan Q F, Pan L, Zou H, Wu A M, Hao S Z, Zhang Q Y, Dong C, Zou G T 2004 Mater. Sci. 39 6349

    [4]

    Wang X T, Guan Q F, Qiu D H, Cheng X W, Li Y, Peng D J, Gu Q Q 2010 Acta Phys. Sin. 59 7252 (in Chinese) [王雪涛, 关庆丰, 邱冬华, 程笃庆, 李艳, 彭冬晋, 顾倩倩 2010 物理学报 59 7252]

    [5]

    Zou H, Jing H Y, Wang Z P, Guan Q F 2010 Acta Phys. Sin. 59 6384 (in Chinese) [邹慧, 荆洪阳, 王志平, 关庆丰 2010 物理学报 59 6384]

    [6]

    Li Y, Cai J, Lv P, Zou Y, Wan M Z, Peng D J, Gu Q Q, Guan Q F 2012 Acta Phys. Sin. 61 056105 (in Chinese) [李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰 2012 物理学报 61 056105]

    [7]

    Cai J, Ji L, Yang S Z, Zhang Z Q, Liu S C, Li Y, Wang X T, Guan Q F 2013 Acta Phys. Sin. 62 156108 (in Chinese) [蔡杰, 季乐, 杨盛志, 张在强, 刘世超, 李艳 王晓彤, 关庆丰 2013 物理学报 62 156108]

    [8]

    Qin Y, Dong C, Wang X G, Hao S Z, Wu A M, Zou J X, Liu Y 2003 J. Vac. Sci. Technol. 21 1934

    [9]

    Meyers M A, Xu Y B, Xue Q 2003 Acta. Mater. 51 1307

    [10]

    Qiu D H, Cheng D Q, Guan Q F, Zou G T 2009 Chin. J. High Pressure Phys. 23 321 (in Chinese) [邱冬华, 程笃庆, 关庆丰, 邹广田 2009 高压物理学报 23 321]

    [11]

    Zou J X, Grosdidier T, Zhang K M, Gao B, Hao S Z, Dong C 2007 J. Alloys Compd. 434 707

    [12]

    Tang G Z, Xu F J, Fan G H, Ma X X, Wang L Q 2012 Nucl. Instrum. Meth. B 288 1

    [13]

    Yasunaga K, Iseki M, Kiritani M 2003 Mater. Sci. Eng A 350 76

    [14]

    Kiritani M 2003 Mater. Sci. Eng A 350 63

    [15]

    Zou J X, Qin Y, Dong C, Wang X G, Wu A M, Hao S Z 2004 J. Vac. Sci. Technol. A 22 545

    [16]

    Meyers M A, Xu Y B, Xue Q, Perez-Prado M T, McNelley T R 2003 Acta. Materialia. 51 1037

    [17]

    Kiritani M, Yoshiie T, Kojima S 1994 J. Nucl. Mater. 212-215 192

    [18]

    Cheng X W, Guan Q F, Fan X H, Chen B 2010 Chin. Phys. B 19 016103

    [19]

    Feng D 2000 Metal Physics (Vol. 1) (Beijing: Science Press) p223 (in Chinese) [冯端 2000 金属物理学 (第一卷) (北京: 科学出版社) 第223页]

    [20]

    Wang T, Chang C, Ming P W 2007 Mater. Rev. 2007 21 80 (in Chinese) [谭望, 陈畅, 汪明朴 2007 材料导报 21 80]

    [21]

    Guduru P R, Rosakis A J 2001 Mech. Mater. 33 371

  • [1]

    Proskurovsky D I, Rotshtein V P, Ozur G E, Markov A B, Nazarov D S 1998 J. Vac. Sci. Technol. A 16 2480

    [2]

    Ma X X, Guo G W, Tang G Z, Sun M R, Wang L Q 2013 Chin. Phys. B 22 056202

    [3]

    Guan Q F, Pan L, Zou H, Wu A M, Hao S Z, Zhang Q Y, Dong C, Zou G T 2004 Mater. Sci. 39 6349

    [4]

    Wang X T, Guan Q F, Qiu D H, Cheng X W, Li Y, Peng D J, Gu Q Q 2010 Acta Phys. Sin. 59 7252 (in Chinese) [王雪涛, 关庆丰, 邱冬华, 程笃庆, 李艳, 彭冬晋, 顾倩倩 2010 物理学报 59 7252]

    [5]

    Zou H, Jing H Y, Wang Z P, Guan Q F 2010 Acta Phys. Sin. 59 6384 (in Chinese) [邹慧, 荆洪阳, 王志平, 关庆丰 2010 物理学报 59 6384]

    [6]

    Li Y, Cai J, Lv P, Zou Y, Wan M Z, Peng D J, Gu Q Q, Guan Q F 2012 Acta Phys. Sin. 61 056105 (in Chinese) [李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰 2012 物理学报 61 056105]

    [7]

    Cai J, Ji L, Yang S Z, Zhang Z Q, Liu S C, Li Y, Wang X T, Guan Q F 2013 Acta Phys. Sin. 62 156108 (in Chinese) [蔡杰, 季乐, 杨盛志, 张在强, 刘世超, 李艳 王晓彤, 关庆丰 2013 物理学报 62 156108]

    [8]

    Qin Y, Dong C, Wang X G, Hao S Z, Wu A M, Zou J X, Liu Y 2003 J. Vac. Sci. Technol. 21 1934

    [9]

    Meyers M A, Xu Y B, Xue Q 2003 Acta. Mater. 51 1307

    [10]

    Qiu D H, Cheng D Q, Guan Q F, Zou G T 2009 Chin. J. High Pressure Phys. 23 321 (in Chinese) [邱冬华, 程笃庆, 关庆丰, 邹广田 2009 高压物理学报 23 321]

    [11]

    Zou J X, Grosdidier T, Zhang K M, Gao B, Hao S Z, Dong C 2007 J. Alloys Compd. 434 707

    [12]

    Tang G Z, Xu F J, Fan G H, Ma X X, Wang L Q 2012 Nucl. Instrum. Meth. B 288 1

    [13]

    Yasunaga K, Iseki M, Kiritani M 2003 Mater. Sci. Eng A 350 76

    [14]

    Kiritani M 2003 Mater. Sci. Eng A 350 63

    [15]

    Zou J X, Qin Y, Dong C, Wang X G, Wu A M, Hao S Z 2004 J. Vac. Sci. Technol. A 22 545

    [16]

    Meyers M A, Xu Y B, Xue Q, Perez-Prado M T, McNelley T R 2003 Acta. Materialia. 51 1037

    [17]

    Kiritani M, Yoshiie T, Kojima S 1994 J. Nucl. Mater. 212-215 192

    [18]

    Cheng X W, Guan Q F, Fan X H, Chen B 2010 Chin. Phys. B 19 016103

    [19]

    Feng D 2000 Metal Physics (Vol. 1) (Beijing: Science Press) p223 (in Chinese) [冯端 2000 金属物理学 (第一卷) (北京: 科学出版社) 第223页]

    [20]

    Wang T, Chang C, Ming P W 2007 Mater. Rev. 2007 21 80 (in Chinese) [谭望, 陈畅, 汪明朴 2007 材料导报 21 80]

    [21]

    Guduru P R, Rosakis A J 2001 Mech. Mater. 33 371

计量
  • 文章访问数:  2151
  • PDF下载量:  624
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-13
  • 修回日期:  2013-09-02
  • 刊出日期:  2013-12-05

强流脉冲电子束辐照诱发纯钼表面的损伤效应及结构缺陷

  • 1. 江苏大学材料科学与工程学院, 镇江 212013
    基金项目: 

    国家自然科学基金委员会-中国民用航空局联合基金(批准号:U1233111)资助的课题.

摘要: 利用强流脉冲电子束(HCPEB)装置对纯钼表面进行辐照处理,并利用X射线衍射仪,扫描电子显微镜(SEM)、透射电子显微镜(TEM)详细分析了辐照表面的微观结构和损伤效应. 1次HCPEB辐照后,纯钼表层积聚了极大的残余应力,多次辐照后表面未融化区域出现大量绝热剪切带,且局部区域发生开裂. 微观结构分析显示,辐照后材料表面形成发散状的位错组态和大量空位簇缺陷;绝热剪切带内部是尺寸为1 μm 左右等轴状的再结晶晶粒. 剪切带造成的材料表面局部软化以及间隙原子偏聚于晶界是材料发生开裂的主要原因. 另外,表面熔化区域可形成尺寸为20 nm左右的纳米晶.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回