搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HoVO4相变的高压拉曼光谱和理论计算研究

陈元正 李硕 李亮 门志伟 李占龙 孙成林 里佐威 周密

引用本文:
Citation:

HoVO4相变的高压拉曼光谱和理论计算研究

陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密

Study of phase transition of HoVO4 under high pressure by Raman scattering and ab initio calculations

Chen Yuan-Zheng, Li Shuo, Li Liang, Men Zhi-Wei, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi
PDF
导出引用
  • 利用高温固相反应法制备了纯相的HoVO4,并在0–21.25 GPa压强范围内测定了HoVO4的拉曼光谱. 通过分析其拉曼峰的频移和劈裂变化情况,发现HoVO4在9.3 GPa发生相变. 根据第一性原理选取并优化相似体系的高压晶体结构,将其与HoVO4的常压锆石矿型I41/amd结构进行了能量比较,确认HoVO4 相变结构为白钨矿型结构(I41/a). 研究结果表明,HoVO4具有ScVO4和YVO4体系的从锆石矿型结构(I41/amd)至白钨矿型结构的相变过程. 分析对应结构相的体积随压强的变化,发现体积坍塌对该相变起重要作用. 上述研究结果有助于了解HoVO4的高压结构以及该材料在高压特殊条件下的应用.
    The aim of this work is to confirm that the HoVO4 has a zircon-to-scheelite phase transition as reported in ScVO4 and YVO4. Firstly, we prepare HoVO4 samples used in the experiments by solid state reaction of appropriate quantities of pre-dried Ho2O3 and V2O5. And the Raman spectra of HoVO4 are measured in a pressure range from ambient pressure to 21.25 GPa at room temperature by using a diamond anvil cell. The discontinuities on Raman mode shifts and the occurrence of new Raman bands provide strong evidence for a phase transition at 9.3 GPa. Secondly, ab initio calculations are performed and the results reveal a zircon-type (I41/amd) to scheelite-type (I41/a) structure in this phase transition. The results are compared with those previously reported for the relevant ScVO4 and YVO4 with a common zircon-to-scheelite phase transition, mainly duo to volume collapses. The results in this work may improve our understanding of the high phase and structure of HoVO4 and benefit the application of this material.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11104107)、高等学校博士学科点专项科研基金(批准号:20110061120008)、中国博士后科学基金(批准号:20110491320,2012T50285)和吉林省基础研究计划(批准号:20130522189JH)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104107), the Specialized Research Fundation for the Doctoral Program of Higher Education of China (Grant No. 20110061120008), the China Postdoctoral Science Foundation (Grant Nos. 20110491320, 2012T50285), and the Research Foundation for Basic Research of Jilin Province, China (Grant No. 20130522189JH).
    [1]

    Shafi S P, Kotyk M W, Cranswick L M D 2009 Inorg. Chem. 48 10553

    [2]

    Mullica D F, Sappenifield E L, Abraham M M, Boatner L A 1996 Inorg. Chim. Acta 248 85

    [3]

    Errandonea D, Lacomba-Perales R, Ruiz-Fuertes J, Segura A, Achary S N, Tyagi A K 2009 Phys. Rev. B 79 184104

    [4]

    Manjon F J, Rodriguez-Hernandez P, Munoz A, Romero A H, Errandonea D, Syassen K 2010 Phys. Rev. B 81 075202

    [5]

    Zhang C C, Zhang Z M, Dai R C, Wang Z P 2010 J. Phys. Chem. C 114 18279

    [6]

    Panchal V, Errandonea D, Segura A, Rodriguez-Hernandez P, Munoz A, Lopez-Moreno S, Bettinelli M 2011 J. Appl. Phys. 110 043723

    [7]

    Ruiz-Fuertes J, Lopez-Moreno S, Errandonea D, Pellicer-Porres J 2010 J. Appl. Phys. 107 083506

    [8]

    Bandiello E, Errandonea D, Martinez-Garcia D, Santamaria-Perez D, Manjon F J 2012 Phys. Rev. B 85 024108

    [9]

    Errandonea D 2005 Phys. Status Solidi B 242 R125

    [10]

    Au C T, Zhang W D 1997 J. Chem. Soc., Faraday Trans. 93 1195

    [11]

    Santos C C, Silva E N, Ayala A P, Guedes I 2007 J. Appl. Phys. 101 053511

    [12]

    Panchal V, Manjon F J, Errandonea D, Rodriguez-Hernandez P, Lopez-Solano J 2011 Phys. Rev. B 83 064111

    [13]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [16]

    Lopez-Moreno S, Errandonea D 2012 Phys. Rev. B 86 104112

    [17]

    Duclos S J, Jayaraman A, Espinosa G P, Cooper A S, Maines G R 1989 J. Phys. Chem. Solids 50 769

    [18]

    Harley R T, Hayes W, Smith S R P 1971 Solid State Commun. 9 515

  • [1]

    Shafi S P, Kotyk M W, Cranswick L M D 2009 Inorg. Chem. 48 10553

    [2]

    Mullica D F, Sappenifield E L, Abraham M M, Boatner L A 1996 Inorg. Chim. Acta 248 85

    [3]

    Errandonea D, Lacomba-Perales R, Ruiz-Fuertes J, Segura A, Achary S N, Tyagi A K 2009 Phys. Rev. B 79 184104

    [4]

    Manjon F J, Rodriguez-Hernandez P, Munoz A, Romero A H, Errandonea D, Syassen K 2010 Phys. Rev. B 81 075202

    [5]

    Zhang C C, Zhang Z M, Dai R C, Wang Z P 2010 J. Phys. Chem. C 114 18279

    [6]

    Panchal V, Errandonea D, Segura A, Rodriguez-Hernandez P, Munoz A, Lopez-Moreno S, Bettinelli M 2011 J. Appl. Phys. 110 043723

    [7]

    Ruiz-Fuertes J, Lopez-Moreno S, Errandonea D, Pellicer-Porres J 2010 J. Appl. Phys. 107 083506

    [8]

    Bandiello E, Errandonea D, Martinez-Garcia D, Santamaria-Perez D, Manjon F J 2012 Phys. Rev. B 85 024108

    [9]

    Errandonea D 2005 Phys. Status Solidi B 242 R125

    [10]

    Au C T, Zhang W D 1997 J. Chem. Soc., Faraday Trans. 93 1195

    [11]

    Santos C C, Silva E N, Ayala A P, Guedes I 2007 J. Appl. Phys. 101 053511

    [12]

    Panchal V, Manjon F J, Errandonea D, Rodriguez-Hernandez P, Lopez-Solano J 2011 Phys. Rev. B 83 064111

    [13]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [16]

    Lopez-Moreno S, Errandonea D 2012 Phys. Rev. B 86 104112

    [17]

    Duclos S J, Jayaraman A, Espinosa G P, Cooper A S, Maines G R 1989 J. Phys. Chem. Solids 50 769

    [18]

    Harley R T, Hayes W, Smith S R P 1971 Solid State Commun. 9 515

  • [1] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱. 物理学报, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [2] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [3] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [4] 陈立晶, 李维学, 戴剑锋, 王青. Mn-N共掺p型ZnO的第一性原理计算. 物理学报, 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [5] 邓胜华, 姜志林. F, Na共掺杂p型ZnO的第一性原理研究. 物理学报, 2014, 63(7): 077101. doi: 10.7498/aps.63.077101
    [6] 李万俊, 方亮, 秦国平, 阮海波, 孔春阳, 郑继, 卞萍, 徐庆, 吴芳. Ag-N共掺p型ZnO的第一性原理研究. 物理学报, 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [7] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. N离子注入富氧ZnO薄膜的p型导电及拉曼特性研究. 物理学报, 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
    [8] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [9] 姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛. 第一性原理研究Te-N共掺p型ZnO. 物理学报, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [10] 袁娣, 黄多辉, 罗华锋. Be, O共掺杂实现p型AlN的第一性原理研究. 物理学报, 2012, 61(14): 147101. doi: 10.7498/aps.61.147101
    [11] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [12] 袁娣, 罗华锋, 黄多辉, 王藩侯. Zn,O共掺杂实现p型AlN的第一性原理研究. 物理学报, 2011, 60(7): 077101. doi: 10.7498/aps.60.077101
    [13] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究. 物理学报, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [14] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [15] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [16] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究. 物理学报, 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [17] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究. 物理学报, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [18] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究. 物理学报, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [19] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [20] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
计量
  • 文章访问数:  7273
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-30
  • 修回日期:  2013-09-20
  • 刊出日期:  2013-12-05

/

返回文章
返回