搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变

余本海 陈东

引用本文:
Citation:

用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变

余本海, 陈东

Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory

Yu Ben-Hai, Chen Dong
PDF
导出引用
  • 运用第一性原理赝势方法,对氮化硅新相(六方P6和P6'相)的电子结构、光学性质和相变过程进行分析,研究能带结构、介电函数谱、反射谱和能量损失函数的变化机理. 研究发现, P6 相变是可行的,在室温下P6和P6 相变的临界压强分别为42.9 和47.7 GPa; 相界的斜率为正值表明P6 相变过程伴随着晶胞体积的塌缩; P6和P6' 相分别属于直接带隙和间接带隙半导体,能隙宽度分别为4.98和4.01 eV;得到了两相的零频介电常数; 反射谱表明,两相的强反射峰均位于真空紫外线区域,因此可以用作紫外光屏蔽或紫外探测材料; 在可见光区域,两相表现为近似透明.
    Characteristics of the hexagonal polymorph Si3N4 i.e., phase transition, electronic and optical properties (band structure, dielectric function, reflectivity and energy loss function) are investigated by the first-principles pseudo-potential method. The results suggest that it is feasible that the P6 transition takes place at room temperature. The critical pressures of the P6 and P6 transformations are 42.9 and 47.7~GPa, respectively. The phase transition from P6 is accompanied by the volume shrinkage. The calculated results also show that the P6 and P6' phases belong to direct bandgap and indirect bandgap semiconductors, respectively. The calculated band gaps are 4.98 and 4.01 eV for the P6 and P6' phases, respectively. Besides, the static dielectric constants are also obtained. The reflectivity shows that the two phases can serve as the shielding and detecting devices for ultraviolet radiation and they have optical transparent behaviors in the visible light region.
    • 基金项目: 国家自然科学基金(批准号:U1204501, 11105115, 11304141)、河南省科技计划(批准号:112300410021)和河南省教育厅科学技术研究重点项目(批准号:12A140010)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1204501, 11105115, 11304141), the Project of Basic and Advanced Technology of Henan Province of China (Grant No. 112300410021), and the Key Project of Science and Technology Research Program of Henan Educational Committee, China (Grant No. 12A140010).
    [1]

    Liu A Y, Cohen M L 1990 Phys. Rev. B 41 10727

    [2]

    Ding W, Liu Y, Zhang Y, Guo J, Zuo Y, Cheng B, Yu J, Wang Q 2009 Chin. Phys. B 18 3044

    [3]

    Ching W Y, Xu Y N, Gale J D, Rhle M 1998 J. Am. Ceram. Soc. 81 3189

    [4]

    Yashima M, Ando Y, Tabira Y 2007 J. Phys. Chem. 111 3609

    [5]

    Kocer C, Hirosaki N, Ogata S 2003 Phys. Rev. B 67 035210

    [6]

    Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueβ H, Kroll P, Boehler R 1999 Nature 400 340

    [7]

    Kroll P, von Appen J 2001 Phys. Stat. Sol. B 226 R6

    [8]

    Kroll P 2003 J. Solid State Chem. 176 530

    [9]

    Ching W Y, Mo S D, Ouyang L Z, Rulis P 2002 J. Am. Ceram. Soc. 85 75

    [10]

    Danilenko N V, Oleinik G S, Dobrovol'skii V D, Britun V F, Semenenko N P 1992 Sov. Powder Metal. Met. Ceram. 31 1035

    [11]

    Lee D D, Kang S J L, Petzow G, Yoon D N 2005 J. Am. Ceram. Soc. 73 767

    [12]

    Jiang J Z, Kragh F, Frost D J, Ståhl K, Lindelov H 2001 J. Phys.: Condens. Matter 13 L515

    [13]

    Kuwabara A, Matsunaga K, Tanaka I 2008 Phys. Rev. B 78 064104

    [14]

    Xu B, Dong J J, McMillan P F, Shebanova O, Salamat A 2011 Phys. Rev. B 84 014113

    [15]

    Togo A, Kroll P 2008 J. Comput. Chem. 29 2255

    [16]

    Tatsumi K, Tanaka I, Adachi H 2002 J. Am. Ceram. Soc. 85 7

    [17]

    Yu B H, Chen D 2013 J. Alloys Compd. 581 747

    [18]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [19]

    von Lilienfeld O A, Tavernelli I, Rothlisberger U, Sebastiani D 2004 Phys. Rev. Lett. 93 153004

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [22]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233

    [23]

    Blanco M A, Francisco E, Luańa V 2004 Comput. Phys. Commun. 158 57

    [24]

    Flórez M, Recio J M, Francisco E, Blanco M A, Martin-Pendás A 2002 Phys. Rev. B 66 144112

    [25]

    Clausius R 1850 Ann. Phys. 155 500

    [26]

    Jiao Z Y, Guo Y L, Niu Y J, Zhang X Z 2013 Acta Phys. Sin. 62 073101 (in Chinese) [焦照勇, 郭永亮, 牛毅君, 张现周 2013 物理学报 62 073101]

    [27]

    Mori-Sanchez P, Cohen A J, Yang W 2008 Phys. Rev. Lett. 100 146401

    [28]

    Kresse G, Marsman M, Hintzsche L E, Flage-Larsen E 2012 Phys. Rev. B 85 045205

    [29]

    Xu Y N, Ching W Y 1995 Phys. Rev. B 51 17379

    [30]

    Ching W Y, Mo S D, Ouyang L Z 2001 Phys. Rev. B 63 245110

    [31]

    Pan H Z, Xu M, Zhu W J, Zhou H P 2006 Acta Phys. Sin. 55 3585 (in Chinese) [潘洪哲, 徐明, 祝文军, 周海平 2006 物理学报 55 3585]

    [32]

    de Krönig R L 1926 J. Opt. Soc. Am. 12 547

    [33]

    Ding Y C, Xu M, Shen Y B, Chen Q Y, Duan M Y 2007 J. Sichuan Norm. Univ. (Nat. Sci.) 30 755 (in Chinese) [丁迎春, 徐明, 沈益斌, 陈青云, 段满益 2007 四川师范大学学报 (自然科学版) 30 755]

    [34]

    Li X Z, Xie Q, Chen Q, Zhao F J, Cui D M 2010 Acta Phys. Sin. 59 2016 (in Chinese) [李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌 2010 物理学报 59 2016]

    [35]

    Allai D, Bouhemadou A, Bin-Omran S 2011 Compt. Mater. Sci. 51 194

    [36]

    Wang J, Li C M, Ao J, Li F, Chen Z Q 2013 Acta Phys. Sin. 62 087102 (in Chinese) [王瑨, 李春梅, 敖靖, 李凤, 陈志谦 2013 物理学报 62 087102]

  • [1]

    Liu A Y, Cohen M L 1990 Phys. Rev. B 41 10727

    [2]

    Ding W, Liu Y, Zhang Y, Guo J, Zuo Y, Cheng B, Yu J, Wang Q 2009 Chin. Phys. B 18 3044

    [3]

    Ching W Y, Xu Y N, Gale J D, Rhle M 1998 J. Am. Ceram. Soc. 81 3189

    [4]

    Yashima M, Ando Y, Tabira Y 2007 J. Phys. Chem. 111 3609

    [5]

    Kocer C, Hirosaki N, Ogata S 2003 Phys. Rev. B 67 035210

    [6]

    Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueβ H, Kroll P, Boehler R 1999 Nature 400 340

    [7]

    Kroll P, von Appen J 2001 Phys. Stat. Sol. B 226 R6

    [8]

    Kroll P 2003 J. Solid State Chem. 176 530

    [9]

    Ching W Y, Mo S D, Ouyang L Z, Rulis P 2002 J. Am. Ceram. Soc. 85 75

    [10]

    Danilenko N V, Oleinik G S, Dobrovol'skii V D, Britun V F, Semenenko N P 1992 Sov. Powder Metal. Met. Ceram. 31 1035

    [11]

    Lee D D, Kang S J L, Petzow G, Yoon D N 2005 J. Am. Ceram. Soc. 73 767

    [12]

    Jiang J Z, Kragh F, Frost D J, Ståhl K, Lindelov H 2001 J. Phys.: Condens. Matter 13 L515

    [13]

    Kuwabara A, Matsunaga K, Tanaka I 2008 Phys. Rev. B 78 064104

    [14]

    Xu B, Dong J J, McMillan P F, Shebanova O, Salamat A 2011 Phys. Rev. B 84 014113

    [15]

    Togo A, Kroll P 2008 J. Comput. Chem. 29 2255

    [16]

    Tatsumi K, Tanaka I, Adachi H 2002 J. Am. Ceram. Soc. 85 7

    [17]

    Yu B H, Chen D 2013 J. Alloys Compd. 581 747

    [18]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [19]

    von Lilienfeld O A, Tavernelli I, Rothlisberger U, Sebastiani D 2004 Phys. Rev. Lett. 93 153004

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [21]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [22]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233

    [23]

    Blanco M A, Francisco E, Luańa V 2004 Comput. Phys. Commun. 158 57

    [24]

    Flórez M, Recio J M, Francisco E, Blanco M A, Martin-Pendás A 2002 Phys. Rev. B 66 144112

    [25]

    Clausius R 1850 Ann. Phys. 155 500

    [26]

    Jiao Z Y, Guo Y L, Niu Y J, Zhang X Z 2013 Acta Phys. Sin. 62 073101 (in Chinese) [焦照勇, 郭永亮, 牛毅君, 张现周 2013 物理学报 62 073101]

    [27]

    Mori-Sanchez P, Cohen A J, Yang W 2008 Phys. Rev. Lett. 100 146401

    [28]

    Kresse G, Marsman M, Hintzsche L E, Flage-Larsen E 2012 Phys. Rev. B 85 045205

    [29]

    Xu Y N, Ching W Y 1995 Phys. Rev. B 51 17379

    [30]

    Ching W Y, Mo S D, Ouyang L Z 2001 Phys. Rev. B 63 245110

    [31]

    Pan H Z, Xu M, Zhu W J, Zhou H P 2006 Acta Phys. Sin. 55 3585 (in Chinese) [潘洪哲, 徐明, 祝文军, 周海平 2006 物理学报 55 3585]

    [32]

    de Krönig R L 1926 J. Opt. Soc. Am. 12 547

    [33]

    Ding Y C, Xu M, Shen Y B, Chen Q Y, Duan M Y 2007 J. Sichuan Norm. Univ. (Nat. Sci.) 30 755 (in Chinese) [丁迎春, 徐明, 沈益斌, 陈青云, 段满益 2007 四川师范大学学报 (自然科学版) 30 755]

    [34]

    Li X Z, Xie Q, Chen Q, Zhao F J, Cui D M 2010 Acta Phys. Sin. 59 2016 (in Chinese) [李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌 2010 物理学报 59 2016]

    [35]

    Allai D, Bouhemadou A, Bin-Omran S 2011 Compt. Mater. Sci. 51 194

    [36]

    Wang J, Li C M, Ao J, Li F, Chen Z Q 2013 Acta Phys. Sin. 62 087102 (in Chinese) [王瑨, 李春梅, 敖靖, 李凤, 陈志谦 2013 物理学报 62 087102]

  • [1] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性. 物理学报, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [2] 钱黎明, 孙梦然, 郑改革. α相三氧化钼中各向异性双曲声子极化激元的耦合性质. 物理学报, 2023, 72(7): 077101. doi: 10.7498/aps.72.20222144
    [3] 刘建基, 刘甲琛, 张国权. 基于电磁感应透明效应的光学图像加减. 物理学报, 2023, 72(9): 094201. doi: 10.7498/aps.72.20221560
    [4] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测. 物理学报, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [5] 焦宝宝. 基于原子核密度的核电荷半径新关系. 物理学报, 2023, 72(11): 112101. doi: 10.7498/aps.72.20230126
    [6] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [7] 张定, 朱玉莹, 汪恒, 薛其坤. 转角铜氧化物中的约瑟夫森效应. 物理学报, 2023, 72(23): 237402. doi: 10.7498/aps.72.20231815
    [8] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [9] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [10] 郭思嘉, 李昱增, 李天梓, 范喜迎, 邱春印. 二维各向异性SSH模型的拓扑性质研究. 物理学报, 2022, 71(7): 070201. doi: 10.7498/aps.71.20211967
    [11] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质. 物理学报, 2022, 71(1): 017101. doi: 10.7498/aps.71.20211599
    [12] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [13] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [14] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [15] 梁殿明, 王超, 史浩东, 刘壮, 付强, 张肃, 战俊彤, 余益欣, 李英超, 姜会林. 基于Zernike模型系数优化的椭球型窗口光学系统像差校正. 物理学报, 2020, 69(24): 244203. doi: 10.7498/aps.69.20200933
    [16] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [17] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [18] 秦京运, 舒群威, 袁艺, 仇伟, 肖立华, 彭平, 卢国松. Tl0.33WO3电子结构和太阳辐射屏蔽性能第一性原理研究. 物理学报, 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [19] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [20] 蔡梦圆, 唐春梅, 张秋月. Li离子电池负极材料石墨炔在B, N掺杂调控下的储Li性能优化. 物理学报, 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
计量
  • 文章访问数:  5714
  • PDF下载量:  592
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-07
  • 修回日期:  2013-11-07
  • 刊出日期:  2014-02-05

/

返回文章
返回