搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Chua电路的四维超混沌忆阻电路

杨芳艳 冷家丽 李清都

引用本文:
Citation:

基于Chua电路的四维超混沌忆阻电路

杨芳艳, 冷家丽, 李清都

The 4-dimensional hyperchaotic memristive circuit based on Chua’s circuit

Yang Fang-Yan, Leng Jia-Li, Li Qing-Du
PDF
导出引用
  • 近年来,忆阻混沌电路受到国内外学者的广泛关注,然而目前四维忆阻系统往往只存在普通混沌(仅有一个正Lyapunov指数). 本文通过用忆阻替换Chua电路中电阻的新途径,得出一个简单的四维忆阻电路. 与仅含有限个孤立不稳定平衡点的大多已知系统不同,本系统存在无穷多个稳定和不稳定平衡点. 研究发现该系统存在着极限环、混沌、超混沌等丰富的复杂行为. 通过进一步数值分析和电路仿真实验,证实了超混沌吸引子的存在,从而解决了关于四维忆阻电路是否存在超混沌的疑问.
    Recently, there has been a growing interest in chaotic memristive circuits. However, four-dimensional (4D) memristive system often can only exhibit common chaos with only one positive Lyapunov exponent. By replacing the resistor of Chua’s circuit with a memristor, we propose a new simple 4D memristive circuit in this paper. A major difference between our proposed system and the known chaotic or hyperchaotic system is that our modified system has infinitely many stable and unstable equilibria. We show that the system can exhibit rich complex dynamic behaviors, such as limit cycles, chaos and hyperchaos. Further numerical study and circuit simulation verify the existence of a hyperchaotic attractor in the memristive circuit, which gives a positive answer about whether there exists hyperchaos in 4D memristive systems.
    • 基金项目: 国家自然科学基金(批准号:61104150)、重庆市杰出青年科学基金(批准号:cstc2013jcyjjq40001)和重庆市自然科学基金(批准号:CSTC2012jjB40009)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61104150), the Science Fund for Distinguished Young Scholars of Chongqing, China (Grant No. cstc2013jcyjjq40001), and Natural Science Foundation Chongqing, China (Grant No. CSTC2012jjB40009).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Theory 18 507

    [2]

    Strukov D B, Snider G S, Stewart G R, Williams R S 2008 Nature 453 80

    [3]

    Tour J M, Tao H 2008 Nature 453 42

    [4]

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 65 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 65 217306]

    [5]

    Yuriy V P, Massimiliano D V 2010 IEEE Trans. Circ. Syst. I 57 1857

    [6]

    Xia Q F, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X M, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G, Williams R S 2009 Nano Lett. 9 3640

    [7]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [8]

    Borghetti J, Li Z Y, Straznicky J, Li X M, Ohlberg D A A, Wu W, Stewart D R, Williams R S 2009 Proc. Natl. Acad. Sci. U.S.A. 106 1699

    [9]

    Song D H, L M F, Ren X, Li M M, Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese) [宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄 2012 物理学报 61 118101]

    [10]

    Hu F W, Bao B C, Wu H G, Wang C L 2013 Acta Phys. Sin. 62 218401 (in Chinese) [胡丰伟, 包伯成, 武花干, 王春丽 2013 物理学报 62 218401]

    [11]

    Hong Q H, Zeng Y C, Li Z J 2013 Acta Phys. Sin. 62 230502 (in Chinese) [洪庆辉, 曾以成, 李志军 2013 物理学报 62 230502]

    [12]

    Bao B C, Wang C L, Wu H G, Qiao X H 2014 Acta Phys. Sin. 63 020504 (in Chinese) [包伯成, 春丽, 武花干, 乔晓华 2014 物理学报 63 020504]

    [13]

    Xu B R 2013 Acta Phys. Sin. 62 190506 (in Chinese) [许碧荣 2013 物理学报 62 190506]

    [14]

    Li Q D, Hu S Y, Tang S, Zeng G 2013 Int. J. Circ. Theor. 10 1912

    [15]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成, 刘中, 徐建平 2010 物理学报 59 3785]

    [16]

    Itoh M, Chua L O 2008 Int. J. Bifur. Chaos 18 3183

    [17]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502]

    [18]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [19]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [20]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 415

    [21]

    Buscarino A, Fortuna L, Frasca M, Gambuzza L V, Sciuto G 2011 2011 10th International Symposium on Signals, Circuits and Systems (ISSCS) Iasi, Romania, June 30-Jnhy 1, 2011 p73

    [22]

    Li Z J, Zeng Y C, Li Z B 2013 Acta Phys. Sin. 63 010502 (in Chinese) [李志军, 曾以成, 李志斌 2013 物理学报 63 010502]

    [23]

    Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci. China Tech. Sci. 41 1135 (in Chinese) [包伯成, 史国栋, 许建平, 刘中, 潘赛虎 2011 中国科学: 技术科学 41 1135]

    [24]

    Qi A X, Pang Z, Wang G 2011 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC) Zhengzhou, China, August 8-10, 2011 p3949

    [25]

    Fitch A L, Yu D S, Iu H H C, Sreeram V 2012 Int. J. Bifur. Chaos 22 1250133

    [26]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Theory 18 507

    [2]

    Strukov D B, Snider G S, Stewart G R, Williams R S 2008 Nature 453 80

    [3]

    Tour J M, Tao H 2008 Nature 453 42

    [4]

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 65 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 65 217306]

    [5]

    Yuriy V P, Massimiliano D V 2010 IEEE Trans. Circ. Syst. I 57 1857

    [6]

    Xia Q F, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X M, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G, Williams R S 2009 Nano Lett. 9 3640

    [7]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [8]

    Borghetti J, Li Z Y, Straznicky J, Li X M, Ohlberg D A A, Wu W, Stewart D R, Williams R S 2009 Proc. Natl. Acad. Sci. U.S.A. 106 1699

    [9]

    Song D H, L M F, Ren X, Li M M, Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese) [宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄 2012 物理学报 61 118101]

    [10]

    Hu F W, Bao B C, Wu H G, Wang C L 2013 Acta Phys. Sin. 62 218401 (in Chinese) [胡丰伟, 包伯成, 武花干, 王春丽 2013 物理学报 62 218401]

    [11]

    Hong Q H, Zeng Y C, Li Z J 2013 Acta Phys. Sin. 62 230502 (in Chinese) [洪庆辉, 曾以成, 李志军 2013 物理学报 62 230502]

    [12]

    Bao B C, Wang C L, Wu H G, Qiao X H 2014 Acta Phys. Sin. 63 020504 (in Chinese) [包伯成, 春丽, 武花干, 乔晓华 2014 物理学报 63 020504]

    [13]

    Xu B R 2013 Acta Phys. Sin. 62 190506 (in Chinese) [许碧荣 2013 物理学报 62 190506]

    [14]

    Li Q D, Hu S Y, Tang S, Zeng G 2013 Int. J. Circ. Theor. 10 1912

    [15]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成, 刘中, 徐建平 2010 物理学报 59 3785]

    [16]

    Itoh M, Chua L O 2008 Int. J. Bifur. Chaos 18 3183

    [17]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502]

    [18]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [19]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [20]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 415

    [21]

    Buscarino A, Fortuna L, Frasca M, Gambuzza L V, Sciuto G 2011 2011 10th International Symposium on Signals, Circuits and Systems (ISSCS) Iasi, Romania, June 30-Jnhy 1, 2011 p73

    [22]

    Li Z J, Zeng Y C, Li Z B 2013 Acta Phys. Sin. 63 010502 (in Chinese) [李志军, 曾以成, 李志斌 2013 物理学报 63 010502]

    [23]

    Bao B C, Shi G D, Xu J P, Liu Z, Pan S H 2011 Sci. China Tech. Sci. 41 1135 (in Chinese) [包伯成, 史国栋, 许建平, 刘中, 潘赛虎 2011 中国科学: 技术科学 41 1135]

    [24]

    Qi A X, Pang Z, Wang G 2011 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC) Zhengzhou, China, August 8-10, 2011 p3949

    [25]

    Fitch A L, Yu D S, Iu H H C, Sreeram V 2012 Int. J. Bifur. Chaos 22 1250133

    [26]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502

  • [1] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [2] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制. 物理学报, 2018, 67(11): 110502. doi: 10.7498/aps.67.20180025
    [3] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [4] 王伟, 曾以成, 孙睿婷. 含三个忆阻器的六阶混沌电路研究. 物理学报, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [5] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [6] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [7] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真. 物理学报, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [8] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [9] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [10] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [11] 付士慧, 裴利军. 具有非线性控制的Chua电路的混沌同步. 物理学报, 2010, 59(9): 5985-5989. doi: 10.7498/aps.59.5985
    [12] 贾红艳, 陈增强, 袁著祉. 一个大范围超混沌系统的生成和电路实现. 物理学报, 2009, 58(7): 4469-4476. doi: 10.7498/aps.58.4469
    [13] 李亚, 张正明, 陶志杰. 一个超混沌六阶蔡氏电路及其硬件实现. 物理学报, 2009, 58(10): 6818-6822. doi: 10.7498/aps.58.6818
    [14] 韩 敏, 牛志强, 韩 冰. 一种参数摄动的混沌异结构同步方法. 物理学报, 2008, 57(11): 6824-6829. doi: 10.7498/aps.57.6824
    [15] 仓诗建, 陈增强, 袁著祉. 一个新四维非自治超混沌系统的分析与电路实现. 物理学报, 2008, 57(3): 1493-1501. doi: 10.7498/aps.57.1493
    [16] 姚利娜, 高金峰, 廖旎焕. 实现混沌系统同步的非线性状态观测器方法. 物理学报, 2006, 55(1): 35-41. doi: 10.7498/aps.55.35
    [17] 陈 滨, 刘光祜, 张 勇, 周正欧. 混沌同步的充分条件及应用. 物理学报, 2005, 54(11): 5039-5047. doi: 10.7498/aps.54.5039
    [18] 于洪洁, 刘延柱. 对称非线性耦合混沌系统的同步. 物理学报, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [19] 张胜海, 杨 华, 钱兴中. 一种控制掺铒光纤激光器超混沌的方法——非线性延时反馈参数调制法. 物理学报, 2004, 53(11): 3706-3709. doi: 10.7498/aps.53.3706
    [20] 岳丽娟, 陈艳艳, 彭建华. 用系统变量比例脉冲方法控制超混沌的电路实验研究. 物理学报, 2001, 50(11): 2097-2102. doi: 10.7498/aps.50.2097
计量
  • 文章访问数:  4093
  • PDF下载量:  895
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-27
  • 修回日期:  2014-01-24
  • 刊出日期:  2014-04-05

基于Chua电路的四维超混沌忆阻电路

  • 1. 重庆邮电大学, 工业物联网与网络化控制教育部重点实验室, 重庆 400065;
  • 2. 重庆邮电大学非线性电路与系统研究所, 重庆 400065
    基金项目: 国家自然科学基金(批准号:61104150)、重庆市杰出青年科学基金(批准号:cstc2013jcyjjq40001)和重庆市自然科学基金(批准号:CSTC2012jjB40009)资助的课题.

摘要: 近年来,忆阻混沌电路受到国内外学者的广泛关注,然而目前四维忆阻系统往往只存在普通混沌(仅有一个正Lyapunov指数). 本文通过用忆阻替换Chua电路中电阻的新途径,得出一个简单的四维忆阻电路. 与仅含有限个孤立不稳定平衡点的大多已知系统不同,本系统存在无穷多个稳定和不稳定平衡点. 研究发现该系统存在着极限环、混沌、超混沌等丰富的复杂行为. 通过进一步数值分析和电路仿真实验,证实了超混沌吸引子的存在,从而解决了关于四维忆阻电路是否存在超混沌的疑问.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回