搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe24+离子双电子复合以及和H2碰撞的共振转移与激发X射线发射过程的研究

牟致栋 魏琦瑛

引用本文:
Citation:

Fe24+离子双电子复合以及和H2碰撞的共振转移与激发X射线发射过程的研究

牟致栋, 魏琦瑛

Study of dielectronic recombination and resonance transfer and excitation with X-ray emission for Fe24++H2 collision

Mu Zhi-Dong, Wei Qi-Ying
PDF
导出引用
  • 以准相对论Hartree-Fock理论为基础,对Fe24+离子 KLn(n=L,M,N,O,P)共振激发态可能辐射衰变通道的双电子复合过程的共振强度进行了系统的理论计算研究. 计算了KLL 共振激发态谱项能级电偶极允许跃迁的共振强度和截面. 在此基础上,根据已有H2分子的实验Compton 轮廓,进一步计算了能量在300–800 MeV范围内,抛射体Fe24+离子俘获H2分子靶电子的 KLn(n=L,M,N,O,P)共振电荷转移与激发X射线发射截面. 计算结果与最新实验值或者其他理论计算结果做了对比分析. 研究表明,对于Fe24+ 离子KLn(n=L,M,N,O,P)的双激发态,Kα辐射衰变通道对双电子复合过程的共振强度贡献最大,是起主导性作用的重要通道. Kα辐射衰变X 射线的波长范围λ为1.850–1.880 Å,而非Kα辐射衰变的波长范围λ为1.460–1.601 Å,两者共振X 射线的波长位置并不重叠.
    Based on the theory of Hartree-Fock with relativistic correction, the theoretical study is carried out on the resonance strength of dielectronic recombination (DR) of the resonance double-excited states (i.e., KLL, KLM, KLN, KLO, KLP) of Fe24+. The resonance strength and colliding cross section of KLL are investigated. By using the experimental results of Compton profiles for H2, the resonance transfer and excitation with X-ray emission cross sections during collision between Fe24+ and target molecule H2 in an energy range of 300-800 MeV are studied. Our results are compared with the recent experimental and theoretical studies. It is found that for the double-excited states of Fe24+, the Kα decay tunnel is the major decay tunnel, and the wavelengths of X-ray in this process range from 1.850 to 1.880 Å. For other decay tunnels, the wavelengths of decay wave range from 1.460 to 1.601 Å. There is no overlap between the wavelengths for two cases. Our results are in reasonable agreement with the experimental results within an estimated uncertainty.
    • 基金项目: 中央高校基本科研业务费(批准号:2013XK04)资助的课题.
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 2013XK04).
    [1]

    Clark M, Brandt D, Swenson J K, Shafroth S M 1985 Phys. Rev. Lett. 54 544

    [2]

    Schulz M, Justiniano E, Schuch R, Mokler P H, Reusch S 1987 Phys. Rev. Lett. 58 1734

    [3]

    Hahn Y 1989 Phys. Rev. A 40 2950

    [4]

    Wang F, Gou B C 2008 Chin. Phys. B 17 1227

    [5]

    Yan L L, Qu Y Z, Liu C H, Zhang Y, Wang J G, Buenker R J 2012 Chin. Phys. B 21 063401

    [6]

    Hahn Y, Gau J N, Omar G, Dube P M 1987 Phys. Rev. A 36 576

    [7]

    McLaughlin D J, Hahn Y 1988 Phys. Rev. A 38 531

    [8]

    Parameswaran R, Bhalla P C, Walch P B, DePaola D B 1991 Phys. Rev. A 43 5929

    [9]

    Parameswaran R, Walch P B, Maleki S, Bhalla P C, DePaola D B 1993 Phys. Rev. A 47 3801

    [10]

    Zaharakis E K, Haar R R, Woitke O, Zhu M, Tanis J A 1995 Phys. Rev. A 52 2910

    [11]

    Mu Z D, Wei Q Y 2007 Acta Phys. Sin. 56 1358 (in Chinese) [牟致栋, 魏琦瑛 2007 物理学报 56 1358]

    [12]

    Dong C Z, Fu Y B 2006 Acta Phys. Sin. 55 107 (in Chinese) [董晨钟, 符彦飙 2006 物理学报 55 107]

    [13]

    Chi B Q, Liu L, Wang J G 2008 Chin. Phys. B 17 2890

    [14]

    Hu X L, Qu Y Z, Zhang S B, Zhang Y 2012 Chin. Phys. B 21 103401

    [15]

    Li C Y, Han X Y, Wang J G, Qu Y Z 2013 Chin. Phys. B 22 123201

    [16]

    Tanis J A, Shafroth M S, Willis E J, Clark M, Swenson J, Strait E N, Mowat J R 1981 Phys. Rev. Lett. 47 828

    [17]

    Tanis J A, Bernstein E M, Graham W G, Clark M, Shafroth M, Johnson B M, Jones K W, Meron M 1982 Phys. Rev. Lett. 49 1325

    [18]

    Tanis J A, Bernstein E M, Graham W G, Stockli M P, Clark M, McFarl R H, Morgan T J, Berkner K H, Schlachter A S, Stearns J W 1984 Phys. Rev. Lett. 53 2551

    [19]

    Clark M W, Tanis J A, Bernstein E M, Badnell N R, DuBois R D, Graham W G, Morgan T J, Plano V L, Schlachter A S, Stockli M P 1992 Phys. Rev. A 45 7846

    [20]

    Beiersdorfer P, Phillips T W, Wong K L, Marrs R E, Vogel D A 1992 Phys. Rev. A 46 3812

    [21]

    Beiersdorfer P, Schneider M B, Bitter M, Goeler S 1992 Rev. Sci. Instrum. 63 5029

    [22]

    Watanabe H, Currell J F, Kuramoto H, Li M Y, Ohtani S, O’Rourke E B, Tong M X 2001 J. Phys. B: At. Mol. Opt. Phys. 34 5095

    [23]

    Kavanagh A P, Watanabe H, Li M Y, O’Rourke B E, Tobiyama H, Nakamura N, McMahon S, Yamada C,Ohtani S, Currell J F 2010 Phys. Rev. A 81 022712

    [24]

    Behar E, Jacobs V L, Oreg J, BarShalom V, Haan S L 2004 Phys. Rev. A 69 022704

    [25]

    Nahar N S, Pradhan A K 2006 Phys. Rev. A 73 062718

    [26]

    Cowan R D 1981 Theory of Atomic Structure and Spectra (Berkeley: University of California Press) p202

    [27]

    Mu Z D, Wei Q Y 2013 Acta Phys. Sin. 62 103101 (in Chinese) [牟致栋, 魏琦瑛 2013 物理学报 62 103101]

    [28]

    Mu Z D, Wei Q Y, Chen D Y 2006 Acta Phys. Sin. 55 4070 (in Chinese) [牟致栋, 魏琦瑛, 陈涤缨 2006 物理学报 55 4070]

    [29]

    Mu Z D, Wei Q Y 2005 Acta Phys. Sin. 54 2614 (in Chinese) [牟致栋, 魏琦瑛 2005 物理学报 54 2614]

    [30]

    Mu Z D, Wei Q Y 2004 Acta Phys. Sin. 53 1742 (in Chinese) [牟致栋, 魏琦瑛 2004 物理学报 53 1742]

    [31]

    Ding K, Mu Z D, Ye S W 2011 Spectrosc. Spect. Anal. 31 25 (in Chinese) [丁凯, 牟致栋, 叶世旺 2011 光谱学与光谱分析 31 25]

    [32]

    McLaughlin D J, Hahn Y 1981 Phys. Rev. A 24 2273

    [33]

    DeWitt D R, Schneider D, Clark M W, Chen M H 1991 Phys. Rev. A 44 7185

    [34]

    Brandt D 1983 Phys. Rev. A 27 1314

    [35]

    Gorczyca T W, Pindzola M S 1995 Phys. Rev. A 52 859

    [36]

    Eisenberger P, Reed W A 1972 Phys. Rev. A 5 2085

    [37]

    Eisenberger P, Reed W A 1974 Phys. Rev. A 9 3237

    [38]

    Lam L, Platzman P M 1974 Phys. Rev. A 9 5128

    [39]

    Wellenstein H F, Bonhan R A 1973 Phys. Rev. A 7 1568

    [40]

    Wong T C, Lee J S, Wellenstein H F, Bonham R A 1975 Phys. Rev. A 12 1846

    [41]

    Biggs F, Mendelsohn L B, Mann J B 1975 At. Data Nucl. Data Tables 16 201

    [42]

    Mu Z D, Wei Q Y, Ding K, Ye S W 2010 J. At. Molec. Phys. 27 19 (in Chinese) [牟致栋, 魏琦瑛, 丁凯, 叶世旺 2010 原子与分子物理学报 27 19]

    [43]

    Gabriel A H 1972 Mon. Not. R. Astron. Soc. 160 99

    [44]

    Lee J S 1977 J. Chem. Phys. 66 4906

  • [1]

    Clark M, Brandt D, Swenson J K, Shafroth S M 1985 Phys. Rev. Lett. 54 544

    [2]

    Schulz M, Justiniano E, Schuch R, Mokler P H, Reusch S 1987 Phys. Rev. Lett. 58 1734

    [3]

    Hahn Y 1989 Phys. Rev. A 40 2950

    [4]

    Wang F, Gou B C 2008 Chin. Phys. B 17 1227

    [5]

    Yan L L, Qu Y Z, Liu C H, Zhang Y, Wang J G, Buenker R J 2012 Chin. Phys. B 21 063401

    [6]

    Hahn Y, Gau J N, Omar G, Dube P M 1987 Phys. Rev. A 36 576

    [7]

    McLaughlin D J, Hahn Y 1988 Phys. Rev. A 38 531

    [8]

    Parameswaran R, Bhalla P C, Walch P B, DePaola D B 1991 Phys. Rev. A 43 5929

    [9]

    Parameswaran R, Walch P B, Maleki S, Bhalla P C, DePaola D B 1993 Phys. Rev. A 47 3801

    [10]

    Zaharakis E K, Haar R R, Woitke O, Zhu M, Tanis J A 1995 Phys. Rev. A 52 2910

    [11]

    Mu Z D, Wei Q Y 2007 Acta Phys. Sin. 56 1358 (in Chinese) [牟致栋, 魏琦瑛 2007 物理学报 56 1358]

    [12]

    Dong C Z, Fu Y B 2006 Acta Phys. Sin. 55 107 (in Chinese) [董晨钟, 符彦飙 2006 物理学报 55 107]

    [13]

    Chi B Q, Liu L, Wang J G 2008 Chin. Phys. B 17 2890

    [14]

    Hu X L, Qu Y Z, Zhang S B, Zhang Y 2012 Chin. Phys. B 21 103401

    [15]

    Li C Y, Han X Y, Wang J G, Qu Y Z 2013 Chin. Phys. B 22 123201

    [16]

    Tanis J A, Shafroth M S, Willis E J, Clark M, Swenson J, Strait E N, Mowat J R 1981 Phys. Rev. Lett. 47 828

    [17]

    Tanis J A, Bernstein E M, Graham W G, Clark M, Shafroth M, Johnson B M, Jones K W, Meron M 1982 Phys. Rev. Lett. 49 1325

    [18]

    Tanis J A, Bernstein E M, Graham W G, Stockli M P, Clark M, McFarl R H, Morgan T J, Berkner K H, Schlachter A S, Stearns J W 1984 Phys. Rev. Lett. 53 2551

    [19]

    Clark M W, Tanis J A, Bernstein E M, Badnell N R, DuBois R D, Graham W G, Morgan T J, Plano V L, Schlachter A S, Stockli M P 1992 Phys. Rev. A 45 7846

    [20]

    Beiersdorfer P, Phillips T W, Wong K L, Marrs R E, Vogel D A 1992 Phys. Rev. A 46 3812

    [21]

    Beiersdorfer P, Schneider M B, Bitter M, Goeler S 1992 Rev. Sci. Instrum. 63 5029

    [22]

    Watanabe H, Currell J F, Kuramoto H, Li M Y, Ohtani S, O’Rourke E B, Tong M X 2001 J. Phys. B: At. Mol. Opt. Phys. 34 5095

    [23]

    Kavanagh A P, Watanabe H, Li M Y, O’Rourke B E, Tobiyama H, Nakamura N, McMahon S, Yamada C,Ohtani S, Currell J F 2010 Phys. Rev. A 81 022712

    [24]

    Behar E, Jacobs V L, Oreg J, BarShalom V, Haan S L 2004 Phys. Rev. A 69 022704

    [25]

    Nahar N S, Pradhan A K 2006 Phys. Rev. A 73 062718

    [26]

    Cowan R D 1981 Theory of Atomic Structure and Spectra (Berkeley: University of California Press) p202

    [27]

    Mu Z D, Wei Q Y 2013 Acta Phys. Sin. 62 103101 (in Chinese) [牟致栋, 魏琦瑛 2013 物理学报 62 103101]

    [28]

    Mu Z D, Wei Q Y, Chen D Y 2006 Acta Phys. Sin. 55 4070 (in Chinese) [牟致栋, 魏琦瑛, 陈涤缨 2006 物理学报 55 4070]

    [29]

    Mu Z D, Wei Q Y 2005 Acta Phys. Sin. 54 2614 (in Chinese) [牟致栋, 魏琦瑛 2005 物理学报 54 2614]

    [30]

    Mu Z D, Wei Q Y 2004 Acta Phys. Sin. 53 1742 (in Chinese) [牟致栋, 魏琦瑛 2004 物理学报 53 1742]

    [31]

    Ding K, Mu Z D, Ye S W 2011 Spectrosc. Spect. Anal. 31 25 (in Chinese) [丁凯, 牟致栋, 叶世旺 2011 光谱学与光谱分析 31 25]

    [32]

    McLaughlin D J, Hahn Y 1981 Phys. Rev. A 24 2273

    [33]

    DeWitt D R, Schneider D, Clark M W, Chen M H 1991 Phys. Rev. A 44 7185

    [34]

    Brandt D 1983 Phys. Rev. A 27 1314

    [35]

    Gorczyca T W, Pindzola M S 1995 Phys. Rev. A 52 859

    [36]

    Eisenberger P, Reed W A 1972 Phys. Rev. A 5 2085

    [37]

    Eisenberger P, Reed W A 1974 Phys. Rev. A 9 3237

    [38]

    Lam L, Platzman P M 1974 Phys. Rev. A 9 5128

    [39]

    Wellenstein H F, Bonhan R A 1973 Phys. Rev. A 7 1568

    [40]

    Wong T C, Lee J S, Wellenstein H F, Bonham R A 1975 Phys. Rev. A 12 1846

    [41]

    Biggs F, Mendelsohn L B, Mann J B 1975 At. Data Nucl. Data Tables 16 201

    [42]

    Mu Z D, Wei Q Y, Ding K, Ye S W 2010 J. At. Molec. Phys. 27 19 (in Chinese) [牟致栋, 魏琦瑛, 丁凯, 叶世旺 2010 原子与分子物理学报 27 19]

    [43]

    Gabriel A H 1972 Mon. Not. R. Astron. Soc. 160 99

    [44]

    Lee J S 1977 J. Chem. Phys. 66 4906

  • [1] 卢肖勇, 袁程, 高阳. 考虑共振电荷转移的离子引出过程理论研究. 物理学报, 2021, 70(14): 145201. doi: 10.7498/aps.70.20210105
    [2] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥. CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移. 物理学报, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [3] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [4] 王小炼, 冯灏, 孙卫国, 樊群超, 王斌, 曾阳阳. 运用球高斯分布极化势研究低能电子与H2 分子碰撞的振动激发动量迁移散射截面. 物理学报, 2011, 60(2): 023401. doi: 10.7498/aps.60.023401
    [5] 李勇军, 冯灏, 孙卫国, 曾阳阳, 王小炼, 李会东, 樊群超. 基于严格交换势的低能电子与H2分子碰撞振动激发散射截面的研究. 物理学报, 2011, 60(4): 043401. doi: 10.7498/aps.60.043401
    [6] 令狐荣锋, 徐梅, 王晓璐, 吕兵, 杨向东. Ne原子与H2分子碰撞的同位素替代效应研究. 物理学报, 2010, 59(4): 2416-2422. doi: 10.7498/aps.59.2416
    [7] 王小炼, 冯灏, 孙卫国, 樊群超, 曾阳阳, 王斌. 低能电子与H2分子碰撞振动激发动量迁移散射截面的研究. 物理学报, 2010, 59(2): 937-942. doi: 10.7498/aps.59.937
    [8] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He同位素与H2分子碰撞第二振动激发分波截面的理论研究. 物理学报, 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [9] 王逊, 刘艳侠, 王月华, 马振宁, 单亚拿, 王景禹. 利用电子结构数据拟合H2分子的电子壳模型势函数参数. 物理学报, 2009, 58(13): 35-S39. doi: 10.7498/aps.58.35
    [10] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [11] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 3He(4He)与H2分子碰撞的同位素效应研究. 物理学报, 2008, 57(6): 3452-3457. doi: 10.7498/aps.57.3452
    [12] 吴 勇, 刘 玲, 王建国. O3+与H2碰撞中非解离电荷转移过程的全量子计算. 物理学报, 2008, 57(2): 947-956. doi: 10.7498/aps.57.947
    [13] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟. 物理学报, 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [14] 董晨钟, 符彦飙. 高离化态Cu18+离子的双电子复合及共振转移激发过程的理论研究. 物理学报, 2006, 55(1): 107-111. doi: 10.7498/aps.55.107
    [15] 高文斌, A.D.RUDERT, J.MARTIN, H.ZACHARIAS, J.B.HALPERN. C2H221分子转动角动量定向分布(Orientation)及其碰撞弛豫和转移. 物理学报, 1999, 48(5): 862-875. doi: 10.7498/aps.48.862
    [16] 解士杰, 韩吉胜, 姚涛. 掺杂聚乙炔中的电荷转移与孤子、极化子等非线性元激发. 物理学报, 1995, 44(10): 1622-1627. doi: 10.7498/aps.44.1622
    [17] 高文斌, R. DOPHEIDE, H. ZACHARIAS. Raman紫外双共振研究C2H2分子的碰撞转动弛豫. 物理学报, 1992, 41(3): 400-407. doi: 10.7498/aps.41.400
    [18] 刘子东, 孙献平, 李森林, 刘秩媛, 曾小云. Rb(62D)原子与基态Rb原子,H2分子碰撞转移截面. 物理学报, 1991, 40(8): 1259-1262. doi: 10.7498/aps.40.1259
    [19] 潘广炎;雷子明;杨锋;刘家瑞;于德洪;孙湘. He_2+_离子和H_2,O_2分子碰撞过程中电子俘获和靶激发的发射截面. 物理学报, 1989, 38(8): 1306-1312. doi: 10.7498/aps.38.1306
    [20] 刘家瑞, 雷子明, 杨锋, 潘广炎, 于德洪, 孙湘. 单、双电荷离子与原子碰撞中的激发态和发射截面比较. 物理学报, 1988, 37(8): 1254-1259. doi: 10.7498/aps.37.1254
计量
  • 文章访问数:  2646
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-17
  • 修回日期:  2014-01-06
  • 刊出日期:  2014-04-05

Fe24+离子双电子复合以及和H2碰撞的共振转移与激发X射线发射过程的研究

  • 1. 中国矿业大学理学院, 徐州 221008
    基金项目: 中央高校基本科研业务费(批准号:2013XK04)资助的课题.

摘要: 以准相对论Hartree-Fock理论为基础,对Fe24+离子 KLn(n=L,M,N,O,P)共振激发态可能辐射衰变通道的双电子复合过程的共振强度进行了系统的理论计算研究. 计算了KLL 共振激发态谱项能级电偶极允许跃迁的共振强度和截面. 在此基础上,根据已有H2分子的实验Compton 轮廓,进一步计算了能量在300–800 MeV范围内,抛射体Fe24+离子俘获H2分子靶电子的 KLn(n=L,M,N,O,P)共振电荷转移与激发X射线发射截面. 计算结果与最新实验值或者其他理论计算结果做了对比分析. 研究表明,对于Fe24+ 离子KLn(n=L,M,N,O,P)的双激发态,Kα辐射衰变通道对双电子复合过程的共振强度贡献最大,是起主导性作用的重要通道. Kα辐射衰变X 射线的波长范围λ为1.850–1.880 Å,而非Kα辐射衰变的波长范围λ为1.460–1.601 Å,两者共振X 射线的波长位置并不重叠.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回