搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe24+离子双电子复合以及和H2碰撞的共振转移与激发X射线发射过程的研究

牟致栋 魏琦瑛

引用本文:
Citation:

Fe24+离子双电子复合以及和H2碰撞的共振转移与激发X射线发射过程的研究

牟致栋, 魏琦瑛

Study of dielectronic recombination and resonance transfer and excitation with X-ray emission for Fe24++H2 collision

Mu Zhi-Dong, Wei Qi-Ying
PDF
导出引用
  • 以准相对论Hartree-Fock理论为基础,对Fe24+离子 KLn(n=L,M,N,O,P)共振激发态可能辐射衰变通道的双电子复合过程的共振强度进行了系统的理论计算研究. 计算了KLL 共振激发态谱项能级电偶极允许跃迁的共振强度和截面. 在此基础上,根据已有H2分子的实验Compton 轮廓,进一步计算了能量在300–800 MeV范围内,抛射体Fe24+离子俘获H2分子靶电子的 KLn(n=L,M,N,O,P)共振电荷转移与激发X射线发射截面. 计算结果与最新实验值或者其他理论计算结果做了对比分析. 研究表明,对于Fe24+ 离子KLn(n=L,M,N,O,P)的双激发态,Kα辐射衰变通道对双电子复合过程的共振强度贡献最大,是起主导性作用的重要通道. Kα辐射衰变X 射线的波长范围λ为1.850–1.880 Å,而非Kα辐射衰变的波长范围λ为1.460–1.601 Å,两者共振X 射线的波长位置并不重叠.
    Based on the theory of Hartree-Fock with relativistic correction, the theoretical study is carried out on the resonance strength of dielectronic recombination (DR) of the resonance double-excited states (i.e., KLL, KLM, KLN, KLO, KLP) of Fe24+. The resonance strength and colliding cross section of KLL are investigated. By using the experimental results of Compton profiles for H2, the resonance transfer and excitation with X-ray emission cross sections during collision between Fe24+ and target molecule H2 in an energy range of 300-800 MeV are studied. Our results are compared with the recent experimental and theoretical studies. It is found that for the double-excited states of Fe24+, the Kα decay tunnel is the major decay tunnel, and the wavelengths of X-ray in this process range from 1.850 to 1.880 Å. For other decay tunnels, the wavelengths of decay wave range from 1.460 to 1.601 Å. There is no overlap between the wavelengths for two cases. Our results are in reasonable agreement with the experimental results within an estimated uncertainty.
    • 基金项目: 中央高校基本科研业务费(批准号:2013XK04)资助的课题.
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 2013XK04).
    [1]

    Clark M, Brandt D, Swenson J K, Shafroth S M 1985 Phys. Rev. Lett. 54 544

    [2]

    Schulz M, Justiniano E, Schuch R, Mokler P H, Reusch S 1987 Phys. Rev. Lett. 58 1734

    [3]

    Hahn Y 1989 Phys. Rev. A 40 2950

    [4]

    Wang F, Gou B C 2008 Chin. Phys. B 17 1227

    [5]

    Yan L L, Qu Y Z, Liu C H, Zhang Y, Wang J G, Buenker R J 2012 Chin. Phys. B 21 063401

    [6]

    Hahn Y, Gau J N, Omar G, Dube P M 1987 Phys. Rev. A 36 576

    [7]

    McLaughlin D J, Hahn Y 1988 Phys. Rev. A 38 531

    [8]

    Parameswaran R, Bhalla P C, Walch P B, DePaola D B 1991 Phys. Rev. A 43 5929

    [9]

    Parameswaran R, Walch P B, Maleki S, Bhalla P C, DePaola D B 1993 Phys. Rev. A 47 3801

    [10]

    Zaharakis E K, Haar R R, Woitke O, Zhu M, Tanis J A 1995 Phys. Rev. A 52 2910

    [11]

    Mu Z D, Wei Q Y 2007 Acta Phys. Sin. 56 1358 (in Chinese) [牟致栋, 魏琦瑛 2007 物理学报 56 1358]

    [12]

    Dong C Z, Fu Y B 2006 Acta Phys. Sin. 55 107 (in Chinese) [董晨钟, 符彦飙 2006 物理学报 55 107]

    [13]

    Chi B Q, Liu L, Wang J G 2008 Chin. Phys. B 17 2890

    [14]

    Hu X L, Qu Y Z, Zhang S B, Zhang Y 2012 Chin. Phys. B 21 103401

    [15]

    Li C Y, Han X Y, Wang J G, Qu Y Z 2013 Chin. Phys. B 22 123201

    [16]

    Tanis J A, Shafroth M S, Willis E J, Clark M, Swenson J, Strait E N, Mowat J R 1981 Phys. Rev. Lett. 47 828

    [17]

    Tanis J A, Bernstein E M, Graham W G, Clark M, Shafroth M, Johnson B M, Jones K W, Meron M 1982 Phys. Rev. Lett. 49 1325

    [18]

    Tanis J A, Bernstein E M, Graham W G, Stockli M P, Clark M, McFarl R H, Morgan T J, Berkner K H, Schlachter A S, Stearns J W 1984 Phys. Rev. Lett. 53 2551

    [19]

    Clark M W, Tanis J A, Bernstein E M, Badnell N R, DuBois R D, Graham W G, Morgan T J, Plano V L, Schlachter A S, Stockli M P 1992 Phys. Rev. A 45 7846

    [20]

    Beiersdorfer P, Phillips T W, Wong K L, Marrs R E, Vogel D A 1992 Phys. Rev. A 46 3812

    [21]

    Beiersdorfer P, Schneider M B, Bitter M, Goeler S 1992 Rev. Sci. Instrum. 63 5029

    [22]

    Watanabe H, Currell J F, Kuramoto H, Li M Y, Ohtani S, O’Rourke E B, Tong M X 2001 J. Phys. B: At. Mol. Opt. Phys. 34 5095

    [23]

    Kavanagh A P, Watanabe H, Li M Y, O’Rourke B E, Tobiyama H, Nakamura N, McMahon S, Yamada C,Ohtani S, Currell J F 2010 Phys. Rev. A 81 022712

    [24]

    Behar E, Jacobs V L, Oreg J, BarShalom V, Haan S L 2004 Phys. Rev. A 69 022704

    [25]

    Nahar N S, Pradhan A K 2006 Phys. Rev. A 73 062718

    [26]

    Cowan R D 1981 Theory of Atomic Structure and Spectra (Berkeley: University of California Press) p202

    [27]

    Mu Z D, Wei Q Y 2013 Acta Phys. Sin. 62 103101 (in Chinese) [牟致栋, 魏琦瑛 2013 物理学报 62 103101]

    [28]

    Mu Z D, Wei Q Y, Chen D Y 2006 Acta Phys. Sin. 55 4070 (in Chinese) [牟致栋, 魏琦瑛, 陈涤缨 2006 物理学报 55 4070]

    [29]

    Mu Z D, Wei Q Y 2005 Acta Phys. Sin. 54 2614 (in Chinese) [牟致栋, 魏琦瑛 2005 物理学报 54 2614]

    [30]

    Mu Z D, Wei Q Y 2004 Acta Phys. Sin. 53 1742 (in Chinese) [牟致栋, 魏琦瑛 2004 物理学报 53 1742]

    [31]

    Ding K, Mu Z D, Ye S W 2011 Spectrosc. Spect. Anal. 31 25 (in Chinese) [丁凯, 牟致栋, 叶世旺 2011 光谱学与光谱分析 31 25]

    [32]

    McLaughlin D J, Hahn Y 1981 Phys. Rev. A 24 2273

    [33]

    DeWitt D R, Schneider D, Clark M W, Chen M H 1991 Phys. Rev. A 44 7185

    [34]

    Brandt D 1983 Phys. Rev. A 27 1314

    [35]

    Gorczyca T W, Pindzola M S 1995 Phys. Rev. A 52 859

    [36]

    Eisenberger P, Reed W A 1972 Phys. Rev. A 5 2085

    [37]

    Eisenberger P, Reed W A 1974 Phys. Rev. A 9 3237

    [38]

    Lam L, Platzman P M 1974 Phys. Rev. A 9 5128

    [39]

    Wellenstein H F, Bonhan R A 1973 Phys. Rev. A 7 1568

    [40]

    Wong T C, Lee J S, Wellenstein H F, Bonham R A 1975 Phys. Rev. A 12 1846

    [41]

    Biggs F, Mendelsohn L B, Mann J B 1975 At. Data Nucl. Data Tables 16 201

    [42]

    Mu Z D, Wei Q Y, Ding K, Ye S W 2010 J. At. Molec. Phys. 27 19 (in Chinese) [牟致栋, 魏琦瑛, 丁凯, 叶世旺 2010 原子与分子物理学报 27 19]

    [43]

    Gabriel A H 1972 Mon. Not. R. Astron. Soc. 160 99

    [44]

    Lee J S 1977 J. Chem. Phys. 66 4906

  • [1]

    Clark M, Brandt D, Swenson J K, Shafroth S M 1985 Phys. Rev. Lett. 54 544

    [2]

    Schulz M, Justiniano E, Schuch R, Mokler P H, Reusch S 1987 Phys. Rev. Lett. 58 1734

    [3]

    Hahn Y 1989 Phys. Rev. A 40 2950

    [4]

    Wang F, Gou B C 2008 Chin. Phys. B 17 1227

    [5]

    Yan L L, Qu Y Z, Liu C H, Zhang Y, Wang J G, Buenker R J 2012 Chin. Phys. B 21 063401

    [6]

    Hahn Y, Gau J N, Omar G, Dube P M 1987 Phys. Rev. A 36 576

    [7]

    McLaughlin D J, Hahn Y 1988 Phys. Rev. A 38 531

    [8]

    Parameswaran R, Bhalla P C, Walch P B, DePaola D B 1991 Phys. Rev. A 43 5929

    [9]

    Parameswaran R, Walch P B, Maleki S, Bhalla P C, DePaola D B 1993 Phys. Rev. A 47 3801

    [10]

    Zaharakis E K, Haar R R, Woitke O, Zhu M, Tanis J A 1995 Phys. Rev. A 52 2910

    [11]

    Mu Z D, Wei Q Y 2007 Acta Phys. Sin. 56 1358 (in Chinese) [牟致栋, 魏琦瑛 2007 物理学报 56 1358]

    [12]

    Dong C Z, Fu Y B 2006 Acta Phys. Sin. 55 107 (in Chinese) [董晨钟, 符彦飙 2006 物理学报 55 107]

    [13]

    Chi B Q, Liu L, Wang J G 2008 Chin. Phys. B 17 2890

    [14]

    Hu X L, Qu Y Z, Zhang S B, Zhang Y 2012 Chin. Phys. B 21 103401

    [15]

    Li C Y, Han X Y, Wang J G, Qu Y Z 2013 Chin. Phys. B 22 123201

    [16]

    Tanis J A, Shafroth M S, Willis E J, Clark M, Swenson J, Strait E N, Mowat J R 1981 Phys. Rev. Lett. 47 828

    [17]

    Tanis J A, Bernstein E M, Graham W G, Clark M, Shafroth M, Johnson B M, Jones K W, Meron M 1982 Phys. Rev. Lett. 49 1325

    [18]

    Tanis J A, Bernstein E M, Graham W G, Stockli M P, Clark M, McFarl R H, Morgan T J, Berkner K H, Schlachter A S, Stearns J W 1984 Phys. Rev. Lett. 53 2551

    [19]

    Clark M W, Tanis J A, Bernstein E M, Badnell N R, DuBois R D, Graham W G, Morgan T J, Plano V L, Schlachter A S, Stockli M P 1992 Phys. Rev. A 45 7846

    [20]

    Beiersdorfer P, Phillips T W, Wong K L, Marrs R E, Vogel D A 1992 Phys. Rev. A 46 3812

    [21]

    Beiersdorfer P, Schneider M B, Bitter M, Goeler S 1992 Rev. Sci. Instrum. 63 5029

    [22]

    Watanabe H, Currell J F, Kuramoto H, Li M Y, Ohtani S, O’Rourke E B, Tong M X 2001 J. Phys. B: At. Mol. Opt. Phys. 34 5095

    [23]

    Kavanagh A P, Watanabe H, Li M Y, O’Rourke B E, Tobiyama H, Nakamura N, McMahon S, Yamada C,Ohtani S, Currell J F 2010 Phys. Rev. A 81 022712

    [24]

    Behar E, Jacobs V L, Oreg J, BarShalom V, Haan S L 2004 Phys. Rev. A 69 022704

    [25]

    Nahar N S, Pradhan A K 2006 Phys. Rev. A 73 062718

    [26]

    Cowan R D 1981 Theory of Atomic Structure and Spectra (Berkeley: University of California Press) p202

    [27]

    Mu Z D, Wei Q Y 2013 Acta Phys. Sin. 62 103101 (in Chinese) [牟致栋, 魏琦瑛 2013 物理学报 62 103101]

    [28]

    Mu Z D, Wei Q Y, Chen D Y 2006 Acta Phys. Sin. 55 4070 (in Chinese) [牟致栋, 魏琦瑛, 陈涤缨 2006 物理学报 55 4070]

    [29]

    Mu Z D, Wei Q Y 2005 Acta Phys. Sin. 54 2614 (in Chinese) [牟致栋, 魏琦瑛 2005 物理学报 54 2614]

    [30]

    Mu Z D, Wei Q Y 2004 Acta Phys. Sin. 53 1742 (in Chinese) [牟致栋, 魏琦瑛 2004 物理学报 53 1742]

    [31]

    Ding K, Mu Z D, Ye S W 2011 Spectrosc. Spect. Anal. 31 25 (in Chinese) [丁凯, 牟致栋, 叶世旺 2011 光谱学与光谱分析 31 25]

    [32]

    McLaughlin D J, Hahn Y 1981 Phys. Rev. A 24 2273

    [33]

    DeWitt D R, Schneider D, Clark M W, Chen M H 1991 Phys. Rev. A 44 7185

    [34]

    Brandt D 1983 Phys. Rev. A 27 1314

    [35]

    Gorczyca T W, Pindzola M S 1995 Phys. Rev. A 52 859

    [36]

    Eisenberger P, Reed W A 1972 Phys. Rev. A 5 2085

    [37]

    Eisenberger P, Reed W A 1974 Phys. Rev. A 9 3237

    [38]

    Lam L, Platzman P M 1974 Phys. Rev. A 9 5128

    [39]

    Wellenstein H F, Bonhan R A 1973 Phys. Rev. A 7 1568

    [40]

    Wong T C, Lee J S, Wellenstein H F, Bonham R A 1975 Phys. Rev. A 12 1846

    [41]

    Biggs F, Mendelsohn L B, Mann J B 1975 At. Data Nucl. Data Tables 16 201

    [42]

    Mu Z D, Wei Q Y, Ding K, Ye S W 2010 J. At. Molec. Phys. 27 19 (in Chinese) [牟致栋, 魏琦瑛, 丁凯, 叶世旺 2010 原子与分子物理学报 27 19]

    [43]

    Gabriel A H 1972 Mon. Not. R. Astron. Soc. 160 99

    [44]

    Lee J S 1977 J. Chem. Phys. 66 4906

计量
  • 文章访问数:  1940
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-17
  • 修回日期:  2014-01-06
  • 刊出日期:  2014-04-05

Fe24+离子双电子复合以及和H2碰撞的共振转移与激发X射线发射过程的研究

  • 1. 中国矿业大学理学院, 徐州 221008
    基金项目: 

    中央高校基本科研业务费(批准号:2013XK04)资助的课题.

摘要: 以准相对论Hartree-Fock理论为基础,对Fe24+离子 KLn(n=L,M,N,O,P)共振激发态可能辐射衰变通道的双电子复合过程的共振强度进行了系统的理论计算研究. 计算了KLL 共振激发态谱项能级电偶极允许跃迁的共振强度和截面. 在此基础上,根据已有H2分子的实验Compton 轮廓,进一步计算了能量在300–800 MeV范围内,抛射体Fe24+离子俘获H2分子靶电子的 KLn(n=L,M,N,O,P)共振电荷转移与激发X射线发射截面. 计算结果与最新实验值或者其他理论计算结果做了对比分析. 研究表明,对于Fe24+ 离子KLn(n=L,M,N,O,P)的双激发态,Kα辐射衰变通道对双电子复合过程的共振强度贡献最大,是起主导性作用的重要通道. Kα辐射衰变X 射线的波长范围λ为1.850–1.880 Å,而非Kα辐射衰变的波长范围λ为1.460–1.601 Å,两者共振X 射线的波长位置并不重叠.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回