搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究

黄诗盛 王勇刚 李会权 林荣勇 闫培光

引用本文:
Citation:

氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究

黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光

Experimental studies of multiple pulses in a passively ytterbium-doped fiber laser based on graphene-oxide saturable absorber

Huang Shi-Sheng, Wang Yong-Gang, Li Hui-Quan, Lin Rong-Yong, Yan Pei-Guang
PDF
导出引用
  • 利用氧化石墨烯作为可饱和吸收体,在被动锁模全正常色散掺镱光纤激光器中研究了多脉冲的现象. 在同一抽运功率不同偏振态下,实验获得了矩形脉冲谐波锁模、耗散孤子谐波锁模、准谐波锁模,脉冲峰值周期性调制,脉冲簇、脉冲束、混沌多重脉冲的多脉冲现象. 插入激光腔内的2 nm窄带滤波器具有限制增益带宽、对脉冲塑形、诱导多脉冲产生的作用. 调节偏振控制器相当于改变腔内增益,是实现不同类型多脉冲现象的主要原因. 本实验研究有利于加深对多脉冲动力学行为在正常色散区域氧化石墨烯锁模掺镱光纤激光器中的理解.
    The different multiple pulse phenomena are experimentally studied in a passively mode-locked ytterbium-doped fiber laser based on graphene-oxide saturable absorber (GOSA) with net normal dispersion cavity. At the same pump power with different polarization orientations, we observe the multiple pulse phenomena, including harmonic mode-locking of rectangular pulses, dissipative solitons, quasi-harmonic mode-locking, periodical peak modulation, multipulse bunches, multipulse cluster, and chaotic multipulse. The inserted 2 nm narrow bandwidth filter is important for limiting the gain bandwidth and shaping pulses. Adjusting the polarization controller is equivalent to changing the gain in the laser cavity, which is the main reason for the formation of different multiple pulses states. This is the first time that different multiple pulses states have been observed in an-normal-dispersion Yb-doped fiber laser with graphene-oxide saturable absorber. These results could extend the understanding of multiple pulse dynamics in GOSA mode-locked fiber lasers.
    • 基金项目: 广东省自然科学基金(批准号:S2013010012235)、广东省高校科技创新项目(批准号:2013KJCX0161)和深圳市科技计划目(批准号:JCYJ20120613172042264,JCYJ20130329142040731)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. S2013010012235), the Foundation for Scientific and Technical Innovation in Higher Education of Guangdong, China (Grant No. 2013KJCX0161), and the Science and Technology Project of Shenzhen City, China (Grant Nos. JCYJ20120613172042264, JCYJ20130329142040731).
    [1]

    Grelu P, Akhmediev N 2004 Opt. Express 12 3184

    [2]

    Amrani F, Salhi M, Leblond H, Sanchez F 2010 Opt. Commun. 283 5224

    [3]

    Feng Q, Chen Y, Zhao C, Li Y, Wen J G, Zhang H 2013 Opt. Engineer. 52 44201

    [4]

    Chen H R, Lin K H, Tsai C Y, Wu H H, Wu C H, Chen C H, Chi Y C, Lin G R, Hsieh W F 2013 Opt. Lett. 38 845

    [5]

    Chen W C, Luo Z C, Xu W C 2009 Laser Phys. Lett. 6 816

    [6]

    Xu Z W, Zhang Z X 2013 Acta Phys. Sin. 62 104210 (in Chinese) [徐中巍, 张祖兴 2013 物理学报 62 104210]

    [7]

    Li X H, Wang Y S, Zhao W, Zhang W, Hu X H, Gao C X, Zhang H, Yang Z, Wang H S, Wang X L, Li C, Shen D Y 2012 Opt. Commun. 285 1356

    [8]

    Chen W C, Xu W C, Cao H, Han D G 2007 Asia Pacific Opt. Communications 67813Q

    [9]

    Chouli S, Grelu P 2010 Phys. Rev. A 81 63829

    [10]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [11]

    Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D, Wang F Q 2013 Sci. Rep. 3 2718

    [12]

    Cui Y D, Liu X M 2013 Opt. Express 21 18969

    [13]

    Song Y F, Li L, Zhang H, Shen D Y, Tang D Y, Loh K P 2013 Opt. Express 21 10010

    [14]

    Meng Y C, Zhang S M, Li X L, Li H F, Du J, Hao Y P 2012 Opt. Express 20 6685

    [15]

    Amrani F, Haboucha A, Salhi M, Leblond H, Komarov A, Grelu P, Sanchez F 2009 Opt. Lett. 34 2120

    [16]

    Wang L R, Liu X M, Gong Y K, Hu X H, Wang Y S, Lu K Q 2009 Acta Phys. Sin. 58 4664 (in Chinese) [王擂然, 刘雪明, 宫永康, 胡晓鸿, 王屹山, 卢克清 2009 物理学报 58 4664]

    [17]

    Zhang Z X, Dai G X 2011 Acta Opt. Sin. 31 131 (in Chinese) [张祖兴, 戴国星 2011 光学学报 31 131]

    [18]

    Zhao H, Chai L, Ouyang C M, Hu M L, Wang Q Y 2010 Chin. J. Lasers 37 2958 (in Chinese) [赵慧, 柴路, 欧阳春梅, 胡明列, 王清月 2010 中国激光 37 2958]

    [19]

    Bao C Y, Xiao X S, Yang C X 2013 Opt. Lett. 38 1875

    [20]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Cheng J Q, Du G G, Yu Y Q, Zhang G L, Wei H F, Luo J, Tsang Y H 2012 Chin. Phys. Lett. 29 114206

    [21]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 75105

    [22]

    Wang Y G, Chen H R, Wen X M, Hsieh W F, Tang J 2011 Nanotechnology 22 455203

    [23]

    Tang D Y, Zhao L M, Zhao B, Liu A Q 2005 Phys. Rev. A 72 43816

    [24]

    Liu X M 2010 Phys Rev. A 81 23811

    [25]

    Liu X M 2011 Phys. Rev A 84 53828

    [26]

    Zhang H, Tang D Y, Wu X, Zhao L M 2009 Opt. Express 17 12692

    [27]

    Zhang H, Tang D, Knize R J, Zhao L M, Bao Q L, Loh K P 2010 Appl. Phys. Lett. 96 111112

  • [1]

    Grelu P, Akhmediev N 2004 Opt. Express 12 3184

    [2]

    Amrani F, Salhi M, Leblond H, Sanchez F 2010 Opt. Commun. 283 5224

    [3]

    Feng Q, Chen Y, Zhao C, Li Y, Wen J G, Zhang H 2013 Opt. Engineer. 52 44201

    [4]

    Chen H R, Lin K H, Tsai C Y, Wu H H, Wu C H, Chen C H, Chi Y C, Lin G R, Hsieh W F 2013 Opt. Lett. 38 845

    [5]

    Chen W C, Luo Z C, Xu W C 2009 Laser Phys. Lett. 6 816

    [6]

    Xu Z W, Zhang Z X 2013 Acta Phys. Sin. 62 104210 (in Chinese) [徐中巍, 张祖兴 2013 物理学报 62 104210]

    [7]

    Li X H, Wang Y S, Zhao W, Zhang W, Hu X H, Gao C X, Zhang H, Yang Z, Wang H S, Wang X L, Li C, Shen D Y 2012 Opt. Commun. 285 1356

    [8]

    Chen W C, Xu W C, Cao H, Han D G 2007 Asia Pacific Opt. Communications 67813Q

    [9]

    Chouli S, Grelu P 2010 Phys. Rev. A 81 63829

    [10]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [11]

    Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D, Wang F Q 2013 Sci. Rep. 3 2718

    [12]

    Cui Y D, Liu X M 2013 Opt. Express 21 18969

    [13]

    Song Y F, Li L, Zhang H, Shen D Y, Tang D Y, Loh K P 2013 Opt. Express 21 10010

    [14]

    Meng Y C, Zhang S M, Li X L, Li H F, Du J, Hao Y P 2012 Opt. Express 20 6685

    [15]

    Amrani F, Haboucha A, Salhi M, Leblond H, Komarov A, Grelu P, Sanchez F 2009 Opt. Lett. 34 2120

    [16]

    Wang L R, Liu X M, Gong Y K, Hu X H, Wang Y S, Lu K Q 2009 Acta Phys. Sin. 58 4664 (in Chinese) [王擂然, 刘雪明, 宫永康, 胡晓鸿, 王屹山, 卢克清 2009 物理学报 58 4664]

    [17]

    Zhang Z X, Dai G X 2011 Acta Opt. Sin. 31 131 (in Chinese) [张祖兴, 戴国星 2011 光学学报 31 131]

    [18]

    Zhao H, Chai L, Ouyang C M, Hu M L, Wang Q Y 2010 Chin. J. Lasers 37 2958 (in Chinese) [赵慧, 柴路, 欧阳春梅, 胡明列, 王清月 2010 中国激光 37 2958]

    [19]

    Bao C Y, Xiao X S, Yang C X 2013 Opt. Lett. 38 1875

    [20]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Cheng J Q, Du G G, Yu Y Q, Zhang G L, Wei H F, Luo J, Tsang Y H 2012 Chin. Phys. Lett. 29 114206

    [21]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 75105

    [22]

    Wang Y G, Chen H R, Wen X M, Hsieh W F, Tang J 2011 Nanotechnology 22 455203

    [23]

    Tang D Y, Zhao L M, Zhao B, Liu A Q 2005 Phys. Rev. A 72 43816

    [24]

    Liu X M 2010 Phys Rev. A 81 23811

    [25]

    Liu X M 2011 Phys. Rev A 84 53828

    [26]

    Zhang H, Tang D Y, Wu X, Zhao L M 2009 Opt. Express 17 12692

    [27]

    Zhang H, Tang D, Knize R J, Zhao L M, Bao Q L, Loh K P 2010 Appl. Phys. Lett. 96 111112

  • [1] 文榆钧, 王鹏, 奚小明, 张汉伟, 黄良金, 杨欢, 闫志平, 杨保来, 史尘, 潘志勇, 王小林, 王泽锋, 许晓军. 激光二极管直接后向泵浦的高光束质量万瓦光纤激光器. 物理学报, 2022, 71(24): 244202. doi: 10.7498/aps.71.20221433
    [2] 李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮. 氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感. 物理学报, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [3] 陆海林, 段芳莉. 硅基材料界面石墨烯片层运动行为及其摩擦特性. 物理学报, 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [4] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [5] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [6] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能. 物理学报, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [7] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [8] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [9] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [10] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [11] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [12] 王玉宝, 齐晓辉, 沈阳, 姚繄蕾, 徐志敬, 潘玉寨. 超长腔碳纳米管锁模多波长掺镱光纤激光器. 物理学报, 2015, 64(20): 204205. doi: 10.7498/aps.64.204205
    [13] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [14] 徐中巍, 张祖兴. 全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 物理学报, 2013, 62(10): 104210. doi: 10.7498/aps.62.104210
    [15] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [16] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [17] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究. 物理学报, 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [18] 郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾. 实验研究大气压多脉冲辉光放电的模式和机理. 物理学报, 2010, 59(4): 2610-2616. doi: 10.7498/aps.59.2610
    [19] 黄绣江, 刘永智, 隋 展, 李明中, 李 忻, 林宏奂, 王建军. 全光纤超短脉冲掺Yb3+光纤环形激光器. 物理学报, 2006, 55(3): 1191-1195. doi: 10.7498/aps.55.1191
    [20] 王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚. 离子注入GaAs实现双包层掺镱光纤激光器被动调Q锁模. 物理学报, 2004, 53(6): 1810-1814. doi: 10.7498/aps.53.1810
计量
  • 文章访问数:  5490
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-01
  • 修回日期:  2013-12-03
  • 刊出日期:  2014-04-05

/

返回文章
返回