搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag-Au二元纳米微粒吸收谱的计算

李思祺 齐卫宏

引用本文:
Citation:

Ag-Au二元纳米微粒吸收谱的计算

李思祺, 齐卫宏

Calculation of absorption spectrum of silver-gold bimetallic nanoparticles

Li Si-Qi, Qi Wei-Hong
PDF
导出引用
  • 纳米微粒的光学性能与其表面等离子体共振关系密切. 本文利用推广的Mie理论计算研究了Au-Ag体系单质、合金以及核壳结构纳米颗粒的消光、吸收和散射的性能(包括壳核结构Ag-Au微粒在紫外-可见光的吸收性能),计算结果与实验值相符合得很好. 研究表明,随着粒径的增加,微粒表面等离子体共振偶极吸收峰出现红移,波峰位置与纳米微粒的尺寸具有线性关系. 壳核结构中,粒径与核壳比决定了整个微粒的吸收性能. 进一步研究表明,当Au壳层较薄时,可以获得具有可调光学性能的壳核纳米结构;而当Au 壳层较厚时,其光学性能与同尺寸单质Au微粒一致. 通过计算分析,本文还将Mie理论推广到具有空腔结构并且壳层厚度达到一定值的纳米微粒. 另外,研究发现合金结构纳米微粒的吸收峰位置与合金成分有着线性关系. 本研究表明,人们可以通过控制纳米微粒的尺寸、形貌和结构,调节其表面等离子体共振峰位,这大大拓展了纳米微粒的应用范围.
    Optical properties of nanoparticles are related to their surface plasmon resonance. In this work, we use Mie theory to compute the extinction, absorption, and scattering properties of noble metal nanoparticles. The calculated results agree well with the experimental values. With increasing particle size, particle dipole absorption peak will be red-shifted; and the peak position and the size of the nanoparticles have a linear relationship. It is found that the ratio of core to shell size determines the absorption properties of spherical Au/Ag core/shell nanoparticles. When the Au shell is thin, the optical properties vary with the adjustable shell. When the Au shell is thick, its optical properties are similar to the pure Au nanoparticle. Through the calculation and analysis we made, the Mie theory can be generalized to nanocavity structures when the shell thickness reaches a certain value. Furthermore, it is found that the absorption peaks of alloy nanoparticles have a linear relationship with the alloy composition.
    • 基金项目: 国家自然科学基金(批准号:21373273)和湖南省自然科学基金(批准号:13JJ1002)资助的课题.
    • Funds: Projec supported by the National Natural Science Foundation of China (Grant No. 21373273) and the Natrual Science Foundation of Hunan Province, China (Grant No. 13JJ1002).
    [1]

    Zheng J J, Sun G 2005 Acta. Phys. Sin. 54 2757 (in Chinese)[郑俊娟, 孙 刚 2005 物理学报 54 2757]

    [2]

    Wang W T, Yang G, Guan Y, Wu W D, Chen Z H 2004 Acta. Phys. Sin. 53 932 (in Chinese)[王伟田, 杨光, 陈正豪 2004 物理学报 53 932]

    [3]

    Wang C, Peng S, Chan R, Sun S H 2009 Small 5 67

    [4]

    Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta. Phys. Sin. 56 7219 (in Chinese)[洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219]

    [5]

    Zhu J, Wang Y C, Yan S N 2004 Chin. Phys. Lett. 21 559

    [6]

    Chen Z, Zhan P, Zhang J H, Wang Z L 2003 Chin. Phys. Lett. 20 1369

    [7]

    Kim J H, Chung H W, Lee T R 2006 Chem. Mater. 18 4115

    [8]

    Zhang T H, Yin M R, Fang Z Y 2005 Physics 34 909 (in Chinese) [张天浩, 尹美荣, 方哲宇 2005 物理 34 909]

    [9]

    Graf C, Blaaderen V A 2002 Langmuir 18 524

    [10]

    Rao H Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p219

    [11]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley Interscience) p83

    [12]

    Li Q, Wang L Z, Lu G Q, Huang J, Zhu X F, 2011 Acta Optical Sinica 31 0726001 (in Chinese) [李强, 王连洲, 逯高清, 黄娆, 朱贤方 2011 光学学报 31 0726001]

    [13]

    Mätzler C 2002 MATLAB Functions for Mie Scattering and Absorption. (Research report, Institute of Applied Physics, University of Bern) p2

    [14]

    Papavassiliou G C 1979 Prog.Solid. State. Ch. 12 185

    [15]

    Michael Q 2011 Optical Properties of Nanoparticle System (Germany: Wileyvch) p128

    [16]

    Li L L, Yang X C, Huang M, Zhao J F, Hou J W 2011 J. Funct. Mater. Devic. 12 14 (in Chinese) [李玲玲, 杨修春, 黄敏, 赵建富, 侯军伟 2011 功能材料与器件学报 12 14]

    [17]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [18]

    Mallin M P, Murphy C J 2002 Nano. Lett. 11 235

    [19]

    Yang J, Jim Y L, Heng P T 2005 J. Phys. Chem. B 109 19208

    [20]

    Tsuji M, Hikinol S, Tanabe R, Yamaguchi D 2010 Chem. Lett. 4 334

    [21]

    Bruzzone S, Arrighini G P, Guidotti C 2003 Mater. Sci. Eng. C 12 965

    [22]

    Anderson T S, Magruder R H, Wittigc J E, Kinser D L, Zuhr R A 2000 Nucl. Instum. Methods Phys. Res. Sec. B 11 401

    [23]

    Yan S N, Wang Y C 2006 T. Nonferr. Metal. Soc. 12 284 (in Chinese) [闫仕农, 王永昌 2006 中国有色金属学报 12 284]

    [24]

    Yan S N, Zhu J 2006 Rare. Metal. Mat. Eng. 1 161 (in Chinese) [闫世农, 朱键 2006 稀有金属材料与工程 1 161]

  • [1]

    Zheng J J, Sun G 2005 Acta. Phys. Sin. 54 2757 (in Chinese)[郑俊娟, 孙 刚 2005 物理学报 54 2757]

    [2]

    Wang W T, Yang G, Guan Y, Wu W D, Chen Z H 2004 Acta. Phys. Sin. 53 932 (in Chinese)[王伟田, 杨光, 陈正豪 2004 物理学报 53 932]

    [3]

    Wang C, Peng S, Chan R, Sun S H 2009 Small 5 67

    [4]

    Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta. Phys. Sin. 56 7219 (in Chinese)[洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219]

    [5]

    Zhu J, Wang Y C, Yan S N 2004 Chin. Phys. Lett. 21 559

    [6]

    Chen Z, Zhan P, Zhang J H, Wang Z L 2003 Chin. Phys. Lett. 20 1369

    [7]

    Kim J H, Chung H W, Lee T R 2006 Chem. Mater. 18 4115

    [8]

    Zhang T H, Yin M R, Fang Z Y 2005 Physics 34 909 (in Chinese) [张天浩, 尹美荣, 方哲宇 2005 物理 34 909]

    [9]

    Graf C, Blaaderen V A 2002 Langmuir 18 524

    [10]

    Rao H Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p219

    [11]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley Interscience) p83

    [12]

    Li Q, Wang L Z, Lu G Q, Huang J, Zhu X F, 2011 Acta Optical Sinica 31 0726001 (in Chinese) [李强, 王连洲, 逯高清, 黄娆, 朱贤方 2011 光学学报 31 0726001]

    [13]

    Mätzler C 2002 MATLAB Functions for Mie Scattering and Absorption. (Research report, Institute of Applied Physics, University of Bern) p2

    [14]

    Papavassiliou G C 1979 Prog.Solid. State. Ch. 12 185

    [15]

    Michael Q 2011 Optical Properties of Nanoparticle System (Germany: Wileyvch) p128

    [16]

    Li L L, Yang X C, Huang M, Zhao J F, Hou J W 2011 J. Funct. Mater. Devic. 12 14 (in Chinese) [李玲玲, 杨修春, 黄敏, 赵建富, 侯军伟 2011 功能材料与器件学报 12 14]

    [17]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [18]

    Mallin M P, Murphy C J 2002 Nano. Lett. 11 235

    [19]

    Yang J, Jim Y L, Heng P T 2005 J. Phys. Chem. B 109 19208

    [20]

    Tsuji M, Hikinol S, Tanabe R, Yamaguchi D 2010 Chem. Lett. 4 334

    [21]

    Bruzzone S, Arrighini G P, Guidotti C 2003 Mater. Sci. Eng. C 12 965

    [22]

    Anderson T S, Magruder R H, Wittigc J E, Kinser D L, Zuhr R A 2000 Nucl. Instum. Methods Phys. Res. Sec. B 11 401

    [23]

    Yan S N, Wang Y C 2006 T. Nonferr. Metal. Soc. 12 284 (in Chinese) [闫仕农, 王永昌 2006 中国有色金属学报 12 284]

    [24]

    Yan S N, Zhu J 2006 Rare. Metal. Mat. Eng. 1 161 (in Chinese) [闫世农, 朱键 2006 稀有金属材料与工程 1 161]

计量
  • 文章访问数:  2189
  • PDF下载量:  1003
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-10
  • 修回日期:  2014-03-04
  • 刊出日期:  2014-06-05

Ag-Au二元纳米微粒吸收谱的计算

  • 1. 中南大学材料科学与工程学院, 长沙 410083;
  • 2. 中南大学粉末冶金国家重点实验室, 长沙 410083;
  • 3. 教育部有色金属材料科学与工程重点实验室, 长沙 410083
    基金项目: 

    国家自然科学基金(批准号:21373273)和湖南省自然科学基金(批准号:13JJ1002)资助的课题.

摘要: 纳米微粒的光学性能与其表面等离子体共振关系密切. 本文利用推广的Mie理论计算研究了Au-Ag体系单质、合金以及核壳结构纳米颗粒的消光、吸收和散射的性能(包括壳核结构Ag-Au微粒在紫外-可见光的吸收性能),计算结果与实验值相符合得很好. 研究表明,随着粒径的增加,微粒表面等离子体共振偶极吸收峰出现红移,波峰位置与纳米微粒的尺寸具有线性关系. 壳核结构中,粒径与核壳比决定了整个微粒的吸收性能. 进一步研究表明,当Au壳层较薄时,可以获得具有可调光学性能的壳核纳米结构;而当Au 壳层较厚时,其光学性能与同尺寸单质Au微粒一致. 通过计算分析,本文还将Mie理论推广到具有空腔结构并且壳层厚度达到一定值的纳米微粒. 另外,研究发现合金结构纳米微粒的吸收峰位置与合金成分有着线性关系. 本研究表明,人们可以通过控制纳米微粒的尺寸、形貌和结构,调节其表面等离子体共振峰位,这大大拓展了纳米微粒的应用范围.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回