搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反场构形的二维磁流体力学描述

李璐璐 张华 杨显俊

引用本文:
Citation:

反场构形的二维磁流体力学描述

李璐璐, 张华, 杨显俊

Two-dimensional magneto-hydrodynamic description of field reversed configuration

Li Lu-Lu, Zhang Hua, Yang Xian-Jun
PDF
导出引用
  • 磁化靶聚变技术作为实现纯聚变的一种途径,不需要惯性约束聚变的高初始密度(约1026 cm-3),也不需要磁约束聚变的长约束时间(秒量级),可能是一种实现纯聚变更低廉更有效的途径. 开发了一个二维磁流体力学模拟程序MPF-2D,用于描述反场构形的形成过程. 采用该程序对美国洛斯阿拉莫斯国家实验室在反场构形形成装置上形成反场构形的实验进行了二维模拟和分析,理论值与实验值符合得较好; 同时也对中国工程物理研究院流体物理研究所设计的荧光-1实验装置上形成的反场构形进行了模拟与评估,结果表明该装置上的反场构形基本达到设计指标.
    Magnetized target fusion (MTF) is an alternative approach to fusion, of which the plasma lifetime and density are those between inertial confinement fusion and magnetic confinement fusion. Field-reversed configuration (FRC) is a candidate target plasma of MTF. In this paper, a two-dimensional magneto-hydrodynamic code MPF-2D is developed, and it is used to simulate the formation process of FRC on experimental devices FRX series at Los Alamos National Laboratory. In addition, design parameters of FRC on Yingguang-1 device are also evaluated, which will be constructed in 2015 at the Institute of Fluid Physics, China Academy of Engineering Physics.
    • 基金项目: 国家自然科学基金(批准号:11105005,11175026,11175028)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105005, 11175026, 11175028).
    [1]

    Wan B N 2008 Sci. Fund. China 22 1 (in Chinese) [万宝年 2008 中国科学基金 22 1]

    [2]

    Zhang J 1999 Physics 28 142 (in Chinese) [张杰 1999 物理 28 142]

    [3]

    Pei W B, Zhu S P 2009 Physics 38 559 (in Chinese) [裴文兵, 朱少平 2009 物理 38 559]

    [4]

    Brumfiel G Nature News 2012-12-11

    [5]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003

    [6]

    Department of Energy, U.S. 2012 NationaI Nuclear Security Administration's Path Forward to Achieving Ignition in the Inertial Confinement Fusion Program

    [7]

    Zaripov M M, Khaybullin I B, Shtyrkov E I 1976 Sov. Phys. Usp. 19 1032

    [8]

    Lindemuth I R, Kirkpatrick R C 1983 Nucl. Fusion 23 263

    [9]

    Tuszewski M 1988 Nucl. Fusion 28 2033

    [10]

    Green T S 1960 Phys. Rev. Lett. 5 297

    [11]

    Wright J K, Phillips N J 1960 J. Nucl. Energy Part C 1 240

    [12]

    Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Assmus P N, Bass C M, Carey C, de Vries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K F, Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J 2003 Rev. Sci. Instrum. 74 4314

    [13]

    Binderbauer M W, Guo H Y, Tuszewski M, et al. 2010 Phys. Rev. Lett. 105 045003

    [14]

    Yamada M, Ono Y, Hayakawa A, Katsurai M 1990 Phys. Rev. Lett. 65 721

    [15]

    Slough J T, Miller K E 2000 Phys. Rev. Lett. 85 1444

    [16]

    Siemon R E, Bartsch R R 1980 Proceedings of the 3rd Symposium on the Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program (Los Alamos: Los Alamos National Scientific Laboratory) LA-8700-C

    [17]

    Armstrong W T, Linford R K, Lipson J, Platts D A, Sherwood E G 1981 Phys. Fluids 24 2068

    [18]

    Intrator T P, Park J Y, Degnan J H, Furno S I, Grabowski C, Hsu S C, Ruden E L, Sanchez P G, Taccetti J M, Tuszewski M, Waganaar W J, Wurden G A, Zhang S Y, Wang Z 2004 IEEE Trans. Plasma Sci. 32 152

    [19]

    Sun Q Z, Fang D F, Liu W, Qin W D, Jia Y S, Zhao X M, Han W H 2013 Acta Phys. Sin. 62 078407 (in Chinese) [孙奇志, 方东凡, 刘伟, 秦卫东, 贾月松, 赵小明, 韩文辉 2013 物理学报 62 078407]

    [20]

    Yamada M, Kulsrud R, Ji H 2010 Rev. Mod. Phys. 82 603

    [21]

    Yamada M, Ren Y, Ji H, Breslau J, Gerhardt S, Kulsrud R, Kuritsyn A 2006 Phys. Plasmas 13 052119

    [22]

    Ono Y, Yamada M, Akao T, Tajima T, Matsumoto R 1996 Phys. Rev. Lett. 76 3328

    [23]

    Brown M 1999 Phys. Plasmas 6 1717

    [24]

    Rej D J, Tuszewski M 1984 Phys. Fluids 27 1514

    [25]

    Dahlin J E, Scheffel J 2004 Phys. Scr. 70 310

    [26]

    Wang M Y, Miley G H 1979 Nucl. Fusion 19 39

    [27]

    Semenov V N, Sosnin N V 1981 Sov. J. Plasma Phys. 7 180

    [28]

    Hsiao M Y, Chiang P R 1990 Phys. Fluids B 2 106

    [29]

    Milroy R D, Brackbill J U 1982 Phys. Fluids 25 775

    [30]

    Guo H Y, Binderbauer M W, Barnes D, et al. 2011 Phys. Plasmas 18 056110

    [31]

    Barnes D C, Aydemir A Y, Anderson D V, Shestakov A I, Schnack D D 1980 Proceedings of the 3rd Symposium on the Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program (Los Alamos: Los Alamos National Scientific Laboratory) LA-8700-C

    [32]

    Bames D C, Schnack D D, Milroy R D 1986 Bull. Am. Phys. Soc. 31 1488

    [33]

    Sovinec C R, Glasser A H, Gianakon T A, Barnes D C, Nebel R A, Kruger S E, Schnack D D, Plimpton S J, Tarditi A, Chu M S 2004 J. Comput. Phys. 195 355

    [34]

    Guo H Y, Hoffman A L, Milroy R D 2007 Phys. Plasmas 14 112502

    [35]

    Cohen S A, Berlinger B, Brunkhorst C, Brooks A, Ferraro N, Lundberg D P, Roach A, Glasser A H 2007 Phys. Rev. Lett. 98 145002

    [36]

    Makomaski A H, Pietrzyk Z A 1980 Phys. Fluids 23 379

    [37]

    Davidson R C, Gladd N T 1975 Phys. Fluids 18 1327

    [38]

    Davidson R C, Krall N A 1977 Nucl. Fusion 17 1313

    [39]

    Carter T A, Ji H, Trintchouk F, Yamada M, Kulsrud R M 2002 Phys. Rev. Lett. 88 015001

    [40]

    Hirt C W, Amsden A A, Cook J L 1997 J. Comput. Phys. 135 203

    [41]

    Kershaw D S 1981 J. Comput. Phys. 39 375

    [42]

    Winslow A W 1963 Equipotential Zoning of Two-Dimensional Meshes (Livermore: Lawrence Livermore National Laboratory) UCRL-7312

    [43]

    Winslow A W 1981 Adaptive Mesh Zoning by Equipotential Method (Livermore: Lawrence Livermore National Laboratory) UCID-19062

    [44]

    Margolin L G, Shashkov M 2002 Second-Order Sign-Preserving Remapping on General Grids (Los Alamos: Los Alamos National Scientific Laboratory) LA-UR-02-525

    [45]

    Cochrane J C, Armstrong W T, Lipson J, Tuszewski M 1981 Observations of Separatrix Motion During the Formation of a Field-reversed Configuration (Los Alamos: Los Alamos National Scientific Laboratory) LA-8716-MS

  • [1]

    Wan B N 2008 Sci. Fund. China 22 1 (in Chinese) [万宝年 2008 中国科学基金 22 1]

    [2]

    Zhang J 1999 Physics 28 142 (in Chinese) [张杰 1999 物理 28 142]

    [3]

    Pei W B, Zhu S P 2009 Physics 38 559 (in Chinese) [裴文兵, 朱少平 2009 物理 38 559]

    [4]

    Brumfiel G Nature News 2012-12-11

    [5]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003

    [6]

    Department of Energy, U.S. 2012 NationaI Nuclear Security Administration's Path Forward to Achieving Ignition in the Inertial Confinement Fusion Program

    [7]

    Zaripov M M, Khaybullin I B, Shtyrkov E I 1976 Sov. Phys. Usp. 19 1032

    [8]

    Lindemuth I R, Kirkpatrick R C 1983 Nucl. Fusion 23 263

    [9]

    Tuszewski M 1988 Nucl. Fusion 28 2033

    [10]

    Green T S 1960 Phys. Rev. Lett. 5 297

    [11]

    Wright J K, Phillips N J 1960 J. Nucl. Energy Part C 1 240

    [12]

    Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Assmus P N, Bass C M, Carey C, de Vries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K F, Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J 2003 Rev. Sci. Instrum. 74 4314

    [13]

    Binderbauer M W, Guo H Y, Tuszewski M, et al. 2010 Phys. Rev. Lett. 105 045003

    [14]

    Yamada M, Ono Y, Hayakawa A, Katsurai M 1990 Phys. Rev. Lett. 65 721

    [15]

    Slough J T, Miller K E 2000 Phys. Rev. Lett. 85 1444

    [16]

    Siemon R E, Bartsch R R 1980 Proceedings of the 3rd Symposium on the Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program (Los Alamos: Los Alamos National Scientific Laboratory) LA-8700-C

    [17]

    Armstrong W T, Linford R K, Lipson J, Platts D A, Sherwood E G 1981 Phys. Fluids 24 2068

    [18]

    Intrator T P, Park J Y, Degnan J H, Furno S I, Grabowski C, Hsu S C, Ruden E L, Sanchez P G, Taccetti J M, Tuszewski M, Waganaar W J, Wurden G A, Zhang S Y, Wang Z 2004 IEEE Trans. Plasma Sci. 32 152

    [19]

    Sun Q Z, Fang D F, Liu W, Qin W D, Jia Y S, Zhao X M, Han W H 2013 Acta Phys. Sin. 62 078407 (in Chinese) [孙奇志, 方东凡, 刘伟, 秦卫东, 贾月松, 赵小明, 韩文辉 2013 物理学报 62 078407]

    [20]

    Yamada M, Kulsrud R, Ji H 2010 Rev. Mod. Phys. 82 603

    [21]

    Yamada M, Ren Y, Ji H, Breslau J, Gerhardt S, Kulsrud R, Kuritsyn A 2006 Phys. Plasmas 13 052119

    [22]

    Ono Y, Yamada M, Akao T, Tajima T, Matsumoto R 1996 Phys. Rev. Lett. 76 3328

    [23]

    Brown M 1999 Phys. Plasmas 6 1717

    [24]

    Rej D J, Tuszewski M 1984 Phys. Fluids 27 1514

    [25]

    Dahlin J E, Scheffel J 2004 Phys. Scr. 70 310

    [26]

    Wang M Y, Miley G H 1979 Nucl. Fusion 19 39

    [27]

    Semenov V N, Sosnin N V 1981 Sov. J. Plasma Phys. 7 180

    [28]

    Hsiao M Y, Chiang P R 1990 Phys. Fluids B 2 106

    [29]

    Milroy R D, Brackbill J U 1982 Phys. Fluids 25 775

    [30]

    Guo H Y, Binderbauer M W, Barnes D, et al. 2011 Phys. Plasmas 18 056110

    [31]

    Barnes D C, Aydemir A Y, Anderson D V, Shestakov A I, Schnack D D 1980 Proceedings of the 3rd Symposium on the Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program (Los Alamos: Los Alamos National Scientific Laboratory) LA-8700-C

    [32]

    Bames D C, Schnack D D, Milroy R D 1986 Bull. Am. Phys. Soc. 31 1488

    [33]

    Sovinec C R, Glasser A H, Gianakon T A, Barnes D C, Nebel R A, Kruger S E, Schnack D D, Plimpton S J, Tarditi A, Chu M S 2004 J. Comput. Phys. 195 355

    [34]

    Guo H Y, Hoffman A L, Milroy R D 2007 Phys. Plasmas 14 112502

    [35]

    Cohen S A, Berlinger B, Brunkhorst C, Brooks A, Ferraro N, Lundberg D P, Roach A, Glasser A H 2007 Phys. Rev. Lett. 98 145002

    [36]

    Makomaski A H, Pietrzyk Z A 1980 Phys. Fluids 23 379

    [37]

    Davidson R C, Gladd N T 1975 Phys. Fluids 18 1327

    [38]

    Davidson R C, Krall N A 1977 Nucl. Fusion 17 1313

    [39]

    Carter T A, Ji H, Trintchouk F, Yamada M, Kulsrud R M 2002 Phys. Rev. Lett. 88 015001

    [40]

    Hirt C W, Amsden A A, Cook J L 1997 J. Comput. Phys. 135 203

    [41]

    Kershaw D S 1981 J. Comput. Phys. 39 375

    [42]

    Winslow A W 1963 Equipotential Zoning of Two-Dimensional Meshes (Livermore: Lawrence Livermore National Laboratory) UCRL-7312

    [43]

    Winslow A W 1981 Adaptive Mesh Zoning by Equipotential Method (Livermore: Lawrence Livermore National Laboratory) UCID-19062

    [44]

    Margolin L G, Shashkov M 2002 Second-Order Sign-Preserving Remapping on General Grids (Los Alamos: Los Alamos National Scientific Laboratory) LA-UR-02-525

    [45]

    Cochrane J C, Armstrong W T, Lipson J, Tuszewski M 1981 Observations of Separatrix Motion During the Formation of a Field-reversed Configuration (Los Alamos: Los Alamos National Scientific Laboratory) LA-8716-MS

  • [1] 浦实, 黄旭光. 相对论自旋流体力学. 物理学报, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [2] 徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队. EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述. 物理学报, 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [3] 李柱柏, 魏磊, 张震, 段东伟, 赵倩. 磁振子宏观效应以及热扰动场对反磁化的影响. 物理学报, 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [4] 赵海龙, 肖波, 王刚华, 王强, 阚明先, 段书超, 谢龙, 邓建军. 磁化套筒惯性聚变中端面损失效应的一维唯象模型与影响分析. 物理学报, 2021, 70(6): 065202. doi: 10.7498/aps.70.20201587
    [5] 赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军. 磁化套筒惯性聚变一维集成化数值模拟. 物理学报, 2020, 69(3): 035203. doi: 10.7498/aps.69.20191411
    [6] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [7] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型. 物理学报, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [8] 张扬, 薛创, 丁宁, 刘海风, 宋海峰, 张朝辉, 王贵林, 孙顺凯, 宁成, 戴自换, 束小建. 聚龙一号装置磁驱动准等熵压缩实验的一维磁流体力学模拟. 物理学报, 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [9] 张扬, 戴自换, 孙奇志, 章征伟, 孙海权, 王裴, 丁宁, 薛创, 王冠琼, 沈智军, 李肖, 王建国. FP-1装置铝套筒内爆动力学过程的一维磁流体力学模拟. 物理学报, 2018, 67(8): 080701. doi: 10.7498/aps.67.20172300
    [10] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [11] 李璐璐, 张华, 杨显俊. 反场构形的传输过程. 物理学报, 2015, 64(12): 125202. doi: 10.7498/aps.64.125202
    [12] 孙奇志, 方东凡, 刘伟, 秦卫东, 贾月松, 赵小明, 韩文辉. "荧光-1"实验装置物理设计. 物理学报, 2013, 62(7): 078407. doi: 10.7498/aps.62.078407
    [13] 李传起, 顾斌, 母丽丽, 张青梅, 陈美红, 蒋勇. 赤道面磁层顶位形的磁流体力学模拟研究. 物理学报, 2012, 61(21): 219402. doi: 10.7498/aps.61.219402
    [14] 温坚, 田欢欢, 薛郁. 考虑次近邻作用的行人交通格子流体力学模型. 物理学报, 2010, 59(6): 3817-3823. doi: 10.7498/aps.59.3817
    [15] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [16] 庞海龙, 李英骏, 鲁 欣, 张 杰. 基于高斯型脉冲驱动的类镍瞬态X射线激光的流体力学模型. 物理学报, 2006, 55(12): 6382-6386. doi: 10.7498/aps.55.6382
    [17] 苍 宇, 鲁 欣, 武慧春, 张 杰. 有质动力和静电分离场对激光等离子体流体力学状态的影响. 物理学报, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [18] 朱武飚, 王友年, 邓新禄, 马腾才. 负偏压射频放电过程的流体力学模拟. 物理学报, 1996, 45(7): 1138-1145. doi: 10.7498/aps.45.1138
    [19] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [20] 陈仁. 关于磁流体力学激波中的开闸激震与关闸激震是否存在的问题. 物理学报, 1966, 22(9): 1098-1102. doi: 10.7498/aps.22.1098
计量
  • 文章访问数:  6381
  • PDF下载量:  547
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-12
  • 修回日期:  2014-04-01
  • 刊出日期:  2014-08-05

/

返回文章
返回