-
本文提出一种新型的半导体温差发电模型,在温差发电过程的数值模拟中考虑了热电单元之间封闭腔体内空气传热的影响.同时进一步运用有限元的数值计算方法对不同电臂对数和不同型号温差发电模型的温度场、电压场进行了数值仿真计算,并对仿真结果进行分析.结果表明:采用127对热电单元模型计算的能量转换效率随冷热端温差增大而迅速提高,与采用1对热电单元模型计算的能量转换效率之差从冷热端温差为20℃的0.39%提高到冷热端温差为220℃时的5.16%,能量转换效率比1对热电单元平均高出3.02%. 冷端温度恒定在30℃时,温差发电芯片的输出电压、功率以及能量转换效率均随着电偶臂的横截面积的增大而提高,且电偶臂冷热两端的温差越大提高幅度也越大,而温差发电芯片内阻则与电偶臂横截面积成反比关系,当温差为220℃时对应的输出功率最高达28.9 W.This paper presents an improved model of thermoelectric power generation, taking into consideration the effect of air heat transfer in a closed cavity between the thermoelectric couples. We have used the ANSYS software, under the condition of different numbers of thermoelectric couples and different models, to simulate numerically and analyze the temperature field and, the voltage field of thermoelectric power generation. Results show that the energy conversion efficiency of 127 pairs of thermoelectric couples increases rapidly as the temperature gradient between the hot and cold ends increases as compared with 1 pair of thermoelectric units; it is enhanced from 0.39% to 5.16% at an average of 3.02% while the temperature gradient varies from 20℃ to 220℃. The output voltage of the chip, power, and energy conversion efficiency would increase as the cross-sectional area increases while the cold junction temperature stays at 305℃, and the cold arm galvanic greater the temperature difference across the greater the increase rate, and thermoelectric power generation chip resistance, along with the cross-sectional area of the galvanic arm decreases. The output power can be up to 28.9W as the temperature difference is 220℃.
-
Keywords:
- thermoelectric generation /
- thermoelectric model /
- numerical simulation /
- conversion efficiency
[1] Riffat S B, X L Ma 2003 Appl. Therm. Eng. 23 913
[2] Bejan A 2006 Advanced Engineering Thermodynamics 1 pp710
[3] Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Ctirad Uher, Tristan Day G. Jeffrey Snyder 2012 Nature Materials 11 422
[4] Deng Sh K, Tang X F, Tang R Sh 2009 Chin. Phys. B 18 3084
[5] Yu Zh, Guo Y, Zheng J, Ch F 2013 Chin. Phys. B 22 117303
[6] Zhang Y Q, Shi Y, Pu L, Zhang R, Zheng Y D 2008 Acta. Phy. Sin. 57 5198(in Chinese) [张轶群, 施 毅, 濮 林, 张 荣, 郑有炓 2008 物理学报 57 5198]
[7] Min G, Rowe D M 1992 J. Power Sources 38 253
[8] Rowe D M, Min G 1998 J. Power Sources 73 193
[9] Rowe D M 1981 Appl. Energ. 8 269
[10] Rowe D M 1991 Appl. Energ. 40 241
[11] Miguel Fisac, Francesc X. Villasevil, Antonio M. López 2014 J. Power Sources 252 264
[12] Wang C H, Lin T, Lin M B, Zhong D L 2011 Journal of Guangdong University of Technology 2 47(in Chinese) [王长宏, 林涛, 林明标, 钟达亮 2011 广东工业大学学报 2 47]
[13] Liu L, Zhang S L, Ma Y K, Wu G H, Zheng Sh K, Wang Y Q 2013 Acta Phys. Sin. 62 038802(in Chinese) [刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青 2013 物理学报 62 038802]
[14] Chen J, Yan Z, Wu L 1996 J. Applied Phy. 79 8823
[15] Xuan X C, Ng K C, Yap C, Chua H T 2002 INT Journal Heat Mass Transfer 45 5159
[16] Karri M A, Thacher E F, Helenbrook B T 2011 Energy Convers Manage 52 1596
[17] O’ Shaughnessy S M, Deasy M J, Kinsella C E, Doyle J V, Robinson A J 2013 Appl. Energ. 102 374
[18] Shiho Kim 2013 Appl Energ 102 1458
[19] Gaowei Liang, Jiemin Zhou 2011 Appl. Energ. 88 5193
[20] Wei Jieting, Xiong Linchang, Wang Hao 2012 Energy Procedia 17 1570
[21] Rezania A, Rosendahl a L A, Yin H 2014 J. Power Sources 255 151
[22] He Wei, Su Y h 2011 Appl. Energ. 88 5083
[23] Qu, Li M D, Le W, Lin Q 2005 Gryogenics 144 20 (in Chinese) [屈健, 李茂德, 乐伟, 林泉 2005 低温工程 144 20]
[24] Dr. Terry Hendricks 2006 Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery Pacific Northwest National Laboratory William T. Choate BCS, Incorporated [chapter1]
-
[1] Riffat S B, X L Ma 2003 Appl. Therm. Eng. 23 913
[2] Bejan A 2006 Advanced Engineering Thermodynamics 1 pp710
[3] Liu H L, Shi X, Xu F F, Zhang L L, Zhang W Q, Chen L D, Li Q, Ctirad Uher, Tristan Day G. Jeffrey Snyder 2012 Nature Materials 11 422
[4] Deng Sh K, Tang X F, Tang R Sh 2009 Chin. Phys. B 18 3084
[5] Yu Zh, Guo Y, Zheng J, Ch F 2013 Chin. Phys. B 22 117303
[6] Zhang Y Q, Shi Y, Pu L, Zhang R, Zheng Y D 2008 Acta. Phy. Sin. 57 5198(in Chinese) [张轶群, 施 毅, 濮 林, 张 荣, 郑有炓 2008 物理学报 57 5198]
[7] Min G, Rowe D M 1992 J. Power Sources 38 253
[8] Rowe D M, Min G 1998 J. Power Sources 73 193
[9] Rowe D M 1981 Appl. Energ. 8 269
[10] Rowe D M 1991 Appl. Energ. 40 241
[11] Miguel Fisac, Francesc X. Villasevil, Antonio M. López 2014 J. Power Sources 252 264
[12] Wang C H, Lin T, Lin M B, Zhong D L 2011 Journal of Guangdong University of Technology 2 47(in Chinese) [王长宏, 林涛, 林明标, 钟达亮 2011 广东工业大学学报 2 47]
[13] Liu L, Zhang S L, Ma Y K, Wu G H, Zheng Sh K, Wang Y Q 2013 Acta Phys. Sin. 62 038802(in Chinese) [刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青 2013 物理学报 62 038802]
[14] Chen J, Yan Z, Wu L 1996 J. Applied Phy. 79 8823
[15] Xuan X C, Ng K C, Yap C, Chua H T 2002 INT Journal Heat Mass Transfer 45 5159
[16] Karri M A, Thacher E F, Helenbrook B T 2011 Energy Convers Manage 52 1596
[17] O’ Shaughnessy S M, Deasy M J, Kinsella C E, Doyle J V, Robinson A J 2013 Appl. Energ. 102 374
[18] Shiho Kim 2013 Appl Energ 102 1458
[19] Gaowei Liang, Jiemin Zhou 2011 Appl. Energ. 88 5193
[20] Wei Jieting, Xiong Linchang, Wang Hao 2012 Energy Procedia 17 1570
[21] Rezania A, Rosendahl a L A, Yin H 2014 J. Power Sources 255 151
[22] He Wei, Su Y h 2011 Appl. Energ. 88 5083
[23] Qu, Li M D, Le W, Lin Q 2005 Gryogenics 144 20 (in Chinese) [屈健, 李茂德, 乐伟, 林泉 2005 低温工程 144 20]
[24] Dr. Terry Hendricks 2006 Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery Pacific Northwest National Laboratory William T. Choate BCS, Incorporated [chapter1]
计量
- 文章访问数: 8147
- PDF下载量: 16113
- 被引次数: 0