搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知的振动数据修复方法

张新鹏 胡茑庆 程哲 钟华

引用本文:
Citation:

基于压缩感知的振动数据修复方法

张新鹏, 胡茑庆, 程哲, 钟华

Vibration data recovery based on compressed sensing

Zhang Xin-Peng, Hu Niao-Qing, Cheng Zhe, Zhong Hua
PDF
导出引用
  • 为解决旋转机械振动信号丢失数据修复的问题,提出一种基于压缩感知原理的振动数据修复方法. 首先对采集到的不完整信号进行处理,将无信息输入时刻对应的数据用零元素填充得到有损信号,以单位矩阵为基础,根据有损信号中零元素的位置信息,构造对应于压缩感知框架下的观测矩阵;再根据待修复信号的特点并结合先验知识,构造或选择能够对振动信号进行稀疏表示的字典矩阵;然后使用高效且稳定的追踪算法,根据有损信号、观测矩阵以及字典矩阵重构原始信号,实现丢失振动数据的修复. 使用仿真数据检验方法的有效性;使用实测的轴承振动状态数据验证方法对于振动数据的适用性,并通过比较完整信号、有损信号和修复信号对应的时域和频域特征值来检验数据修复效果. 实验结果表明:本文方法能够有效地实现丢失数据的修复,且从统计特征的角度来看,相比于有损信号,修复信号能够更为准确地描述真实完整的振动信号.
    A missing data recovery method based on compressed sensing is proposed for vibration data of rotating machinery. Firstly, the incomplete signal is transformed into lossy signal by setting the data values corresponding to the time without input as zeros. According to the indices of zero elements in lossy signal, the observation matrix in the frame of compressed sensing is constructed based on identity matrix. Secondly, the dictionary matrix with which the vibration signal can be represented sparsely is chosen or constructed according to the signal needed to be recovered and other prior knowledge. Finally, the original complete signal is recovered based on the lossy signal, observation matrix and dictionary matrix by using an effective and steady pursuit algorithm. The efficiency of the proposed method is validated with simulation data and practical bearing vibration data. Recovery results are discussed by comparing the characteristic values corresponding to the complete signal, lossy signal and recovered signal in time domain and frequency domain. The test results show that the proposed method can well achieve the missing data recovery, and from the view of statistical characteristics, the recovery signal can describe the complete vibration signal more accurately than the lossy signal.
    • 基金项目: 国家自然科学基金(批准号:51375484,51205401)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51375484, 51205401).
    [1]

    Gu Y, Li Q, Xu B J, Zhao Z 2014 Chin. Phys. B 23 017804

    [2]

    Gao W, Zha F S, Song B Y, Li M T 2014 Chin. Phys. B 23 010701

    [3]

    Yu G Y, Song Y F, He X, Zheng X X, Tan D W, Chen J, Yang Y Q 2012 Chin. Phys. B 21 043402

    [4]

    Liang X X, Ban S L 2004 Chin. Phys. 13 71

    [5]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289

    [6]

    Candés E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489

    [7]

    Candés E J 2006 Proceedings of International Congress of Mathematicians (Switzerland: European Mathematical Society Publishing House) p1433

    [8]

    Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209 (in Chinese) [白旭, 李永强, 赵生妹 2013 物理学报 62 044209]

    [9]

    Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203

    [10]

    Candés E J, Wakin M 2008 IEEE Signal Proc. Mag. 25 21

    [11]

    Donoho D L, Tsaig Y 2006 Signal Process. 86 533

    [12]

    Candés E J, Tao T 2006 IEEE Trans. Inf. Theory 52 5406

    [13]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105

    [14]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110

    [15]

    Lustig M, Donoho D, Pauly J M 2007 Magn. Reson. Med. 58 1182

    [16]

    Herman M, Strohmer T 2009 IEEE Trans. Signal Process 57 2275

    [17]

    Bajwa W U, Haupt J 2007 IEEE Trans. Signal Process 53 3629

    [18]

    Bobin J, Starck J L, Ottensamer R 2008 Appl. Math. Comput. 206 980

    [19]

    Elad M 2007 IEEE Trans. Signal Process 55 5695

    [20]

    Selesnick I, van Slyke R, Guleryuz O 2004 International Conference on Image Processing (ICIP) Singapore, October 24-27, 2004 p1819

    [21]

    Elad M, Starck J L, Querre P, Donoho D L 2005 Appl. Comput. Harmon A 19 340

    [22]

    Zhang Y 2006 Rice University CAAM Technical Report Houston, USA, October, 2006 TR 06-15

    [23]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何壁静, 韦娟 2013 物理学报 62 174212]

    [24]

    Feng B C, Fang S, Zhang L G, Li H, Tong J J, Li W Q 2013 Acta Phys. Sin. 62 112901 (in Chinese) [冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜 2013 物理学报 62 112901]

    [25]

    Candés E J, Tao T 2005 IEEE Trans. Inf. Theory 51 4203

    [26]

    Baraniuk R 2007 IEEE Signal Proc. Mag. 24 118

    [27]

    Davenport M 2010 Ph. D. Dissertation (Houston: Rice University)

    [28]

    Krahmer F, Ward R 2011 SIAM J. Math. Anal. 43 1269

    [29]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [30]

    Wang L Y, Li L, Yan B, Jiang C S, Wang H Y, Bao S L 2010 Chin. Phys. B 19 088106

    [31]

    Pati Y C, Rezaiifar R, Krishnaprasad P S 1993 Twenty-seventh Asilomar Conference on Signal, System & Computers Pacific Grove, California, November 1-3, 1993 1 44

    [32]

    Mallat S, Davis G, Zhang Z 1994 SPIE J. Opt. Eng. 33 2183

    [33]

    DeVore R A, Temlyakov V N 1996 Adv. Comput. Math. 5 173

    [34]

    Sun C, He Z J, Zhang Z S, Chen X F, Cao H R, Ning X Y, Zou L M 2013 Chin. J. Mech. Engineer. 49 30 (in Chinese) [孙闯, 何正嘉, 张周锁, 陈雪峰, 曹宏瑞, 宁喜钰, 邹利民 2013 机械工程学报 49 30]

  • [1]

    Gu Y, Li Q, Xu B J, Zhao Z 2014 Chin. Phys. B 23 017804

    [2]

    Gao W, Zha F S, Song B Y, Li M T 2014 Chin. Phys. B 23 010701

    [3]

    Yu G Y, Song Y F, He X, Zheng X X, Tan D W, Chen J, Yang Y Q 2012 Chin. Phys. B 21 043402

    [4]

    Liang X X, Ban S L 2004 Chin. Phys. 13 71

    [5]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289

    [6]

    Candés E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489

    [7]

    Candés E J 2006 Proceedings of International Congress of Mathematicians (Switzerland: European Mathematical Society Publishing House) p1433

    [8]

    Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209 (in Chinese) [白旭, 李永强, 赵生妹 2013 物理学报 62 044209]

    [9]

    Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203

    [10]

    Candés E J, Wakin M 2008 IEEE Signal Proc. Mag. 25 21

    [11]

    Donoho D L, Tsaig Y 2006 Signal Process. 86 533

    [12]

    Candés E J, Tao T 2006 IEEE Trans. Inf. Theory 52 5406

    [13]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105

    [14]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110

    [15]

    Lustig M, Donoho D, Pauly J M 2007 Magn. Reson. Med. 58 1182

    [16]

    Herman M, Strohmer T 2009 IEEE Trans. Signal Process 57 2275

    [17]

    Bajwa W U, Haupt J 2007 IEEE Trans. Signal Process 53 3629

    [18]

    Bobin J, Starck J L, Ottensamer R 2008 Appl. Math. Comput. 206 980

    [19]

    Elad M 2007 IEEE Trans. Signal Process 55 5695

    [20]

    Selesnick I, van Slyke R, Guleryuz O 2004 International Conference on Image Processing (ICIP) Singapore, October 24-27, 2004 p1819

    [21]

    Elad M, Starck J L, Querre P, Donoho D L 2005 Appl. Comput. Harmon A 19 340

    [22]

    Zhang Y 2006 Rice University CAAM Technical Report Houston, USA, October, 2006 TR 06-15

    [23]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何壁静, 韦娟 2013 物理学报 62 174212]

    [24]

    Feng B C, Fang S, Zhang L G, Li H, Tong J J, Li W Q 2013 Acta Phys. Sin. 62 112901 (in Chinese) [冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜 2013 物理学报 62 112901]

    [25]

    Candés E J, Tao T 2005 IEEE Trans. Inf. Theory 51 4203

    [26]

    Baraniuk R 2007 IEEE Signal Proc. Mag. 24 118

    [27]

    Davenport M 2010 Ph. D. Dissertation (Houston: Rice University)

    [28]

    Krahmer F, Ward R 2011 SIAM J. Math. Anal. 43 1269

    [29]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [30]

    Wang L Y, Li L, Yan B, Jiang C S, Wang H Y, Bao S L 2010 Chin. Phys. B 19 088106

    [31]

    Pati Y C, Rezaiifar R, Krishnaprasad P S 1993 Twenty-seventh Asilomar Conference on Signal, System & Computers Pacific Grove, California, November 1-3, 1993 1 44

    [32]

    Mallat S, Davis G, Zhang Z 1994 SPIE J. Opt. Eng. 33 2183

    [33]

    DeVore R A, Temlyakov V N 1996 Adv. Comput. Math. 5 173

    [34]

    Sun C, He Z J, Zhang Z S, Chen X F, Cao H R, Ning X Y, Zou L M 2013 Chin. J. Mech. Engineer. 49 30 (in Chinese) [孙闯, 何正嘉, 张周锁, 陈雪峰, 曹宏瑞, 宁喜钰, 邹利民 2013 机械工程学报 49 30]

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性. 物理学报, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 干红平, 张涛, 花燚, 舒君, 何立军. 基于双极性混沌序列的托普利兹块状感知矩阵. 物理学报, 2021, 70(3): 038402. doi: 10.7498/aps.70.20201475
    [3] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [4] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法. 物理学报, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [5] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [6] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [7] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法. 物理学报, 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [8] 郭静波, 汪韧. 交替寻优生成元素幅值结合混沌随机相位构造循环测量矩阵. 物理学报, 2015, 64(13): 130702. doi: 10.7498/aps.64.130702
    [9] 郭静波, 李佳文. 二进制信号的混沌压缩测量与重构. 物理学报, 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [10] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法. 物理学报, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [12] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析. 物理学报, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [13] 杨富强, 张定华, 黄魁东, 王鹍, 徐哲. CT不完全投影数据重建算法综述. 物理学报, 2014, 63(5): 058701. doi: 10.7498/aps.63.058701
    [14] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [15] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] 郭静波, 汪韧. 基于混沌序列和RIPless理论的循环压缩测量矩阵的构造. 物理学报, 2014, 63(19): 198402. doi: 10.7498/aps.63.198402
    [17] 刘扬阳, 吕群波, 曾晓茹, 黄旻, 相里斌. 静态计算光谱成像仪图谱反演的关键数据处理技术. 物理学报, 2013, 62(6): 060203. doi: 10.7498/aps.62.060203
    [18] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [19] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [20] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
计量
  • 文章访问数:  5618
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-27
  • 修回日期:  2014-06-09
  • 刊出日期:  2014-10-05

/

返回文章
返回