-
报道了一种由波长锁定878.6 nm半导体激光器共振抽运两块不同掺杂浓度Nd:YVO4晶体串接的1064 nm激光器,并与使用单块的低掺杂浓度晶体和高掺杂浓度晶体情况进行比较,实验表明利用波长锁定878.6 nm半导体激光器共振抽运双晶体串接的方式,有利于降低晶体的热效应,提高光光转换效率. 当抽运功率为40 W 时,获得了28.2 W 的1064 nm激光输出,光光转换率为70.5%,斜率效率为70.6%,相对吸收光的光光转换率76%,斜率效率为76.4%,同时该激光器在10 ℃40 ℃的温度变化范围内具有极好的温度稳定性.
-
关键词:
- 锁波长 /
- 878.6 nm抽运 /
- Nd:YVO4晶体 /
- 1064 nm
We report a wave-locked 878.6 nm diode-laser-pumped multi-segmented Nd:YVO4 laser operating at 1064 nm, which is compared with the high doping concentration and the low doping concentration monolithic Nd:YVO4 lasers. Experimental results show that the configuration of the wave-locked 878.6 nm diode-laser-pumped multi-segmented crystals not only can reduce thermal effects of the laser but also can improve the optical-to-optical conversion efficiency. We have achieved an output power of 28.2 W at 1064 nm with an incidence pump power of 40 W, corresponding to the optical-to-optical efficiency of 70.5%, slope efficiency of 70.6%. For absorbed pump power, the optical-to-optical efficiency is 76% and the slope efficiency is 76.4%. The laser also has an excellent output stability while the temperature is varied from 10 ℃ to 40 ℃.-
Keywords:
- wave-locked /
- 878.6 nm /
- Nd:YVO4 /
- 1064 nm
[1] Zhao J T, Feng G YYang H M, Tang C, Chen N J, Zhou S H 2012 Acta Phys. Sin. 61 084208 (in Chinese) [赵建涛, 冯国英, 杨火木, 唐淳, 陈念江, 周寿桓 2012 物理学报 61 084208]
[2] Liu Q X, Zhong M 2010 Acta Phys. Sin. 59 8535 (in Chinese) [刘全喜, 钟鸣 2010 物理学报 59 8535]
[3] [4] Liu J, Wang Z Y, Li H, Liu Q, Zhang K S 2011 Opt. Express 19 6777
[5] [6] Lin H, Li F J, Liang X Y 2012 Opt. Lett. 37 2634
[7] [8] [9] Dlen X, Balembois F, Musset O, Georges P 2011 J. Opt. Soc. Am. B 28 52
[10] [11] Li B, Ding X, Sheng Q, Yin S J, Shi C P, Li X, Yu X Y, Wen W Q, Yao J Q 2012 Chin. Phys. B 21 014207
[12] [13] Ji F, Yao J Q, Zhang B G, Zhang T L, Xue D G, Wang P 2008 Chin. Phys. B 17 1286
[14] [15] Lavi R, Jackel S 2000 Appl. Opt. 39 3093
[16] Sato Y, Taira T, Pavel N, Lupei V 2003 Appl. Phys. Lett. 82 844
[17] [18] [19] McDonagh L, Wallenstein R, Knappe R 2006 Opt. Lett. 31 3297
[20] [21] Zhu P, Li D J, Hu P, Schell A, Shi P, Haas C, Wu N, Du K M 2008 Opt. Lett. 33 1930
[22] [23] Sangla D, Castaing M, Balembois F, Georges P 2009 Opt. Lett. 34 2159
[24] Xin D, Su J Y, Chun P S, Xue L, Bin L, Quan S, Yu X Y, Wen W Q, Yao J Q 2011 Opt. Express 19 14315
[25] [26] Hong H, Huang L, Liu Q, Yan P, Gong M L 2012 Appl. Opt. 51 323
[27] -
[1] Zhao J T, Feng G YYang H M, Tang C, Chen N J, Zhou S H 2012 Acta Phys. Sin. 61 084208 (in Chinese) [赵建涛, 冯国英, 杨火木, 唐淳, 陈念江, 周寿桓 2012 物理学报 61 084208]
[2] Liu Q X, Zhong M 2010 Acta Phys. Sin. 59 8535 (in Chinese) [刘全喜, 钟鸣 2010 物理学报 59 8535]
[3] [4] Liu J, Wang Z Y, Li H, Liu Q, Zhang K S 2011 Opt. Express 19 6777
[5] [6] Lin H, Li F J, Liang X Y 2012 Opt. Lett. 37 2634
[7] [8] [9] Dlen X, Balembois F, Musset O, Georges P 2011 J. Opt. Soc. Am. B 28 52
[10] [11] Li B, Ding X, Sheng Q, Yin S J, Shi C P, Li X, Yu X Y, Wen W Q, Yao J Q 2012 Chin. Phys. B 21 014207
[12] [13] Ji F, Yao J Q, Zhang B G, Zhang T L, Xue D G, Wang P 2008 Chin. Phys. B 17 1286
[14] [15] Lavi R, Jackel S 2000 Appl. Opt. 39 3093
[16] Sato Y, Taira T, Pavel N, Lupei V 2003 Appl. Phys. Lett. 82 844
[17] [18] [19] McDonagh L, Wallenstein R, Knappe R 2006 Opt. Lett. 31 3297
[20] [21] Zhu P, Li D J, Hu P, Schell A, Shi P, Haas C, Wu N, Du K M 2008 Opt. Lett. 33 1930
[22] [23] Sangla D, Castaing M, Balembois F, Georges P 2009 Opt. Lett. 34 2159
[24] Xin D, Su J Y, Chun P S, Xue L, Bin L, Quan S, Yu X Y, Wen W Q, Yao J Q 2011 Opt. Express 19 14315
[25] [26] Hong H, Huang L, Liu Q, Yan P, Gong M L 2012 Appl. Opt. 51 323
[27]
计量
- 文章访问数: 6317
- PDF下载量: 507
- 被引次数: 0