-
空心光束的质量是超衍射极限相干反斯托克斯拉曼散射显微成像技术中决定成像质量的一个至关重要的因素. 本文基于菲涅耳衍射理论,分析了螺旋相位片法产生空心光束的物理机理,并且模拟了不同的入射条件对产生的空心光束的影响. 模拟结果表明:波长与相位片中心波长匹配且光强呈圆对称分布的高斯光垂直入射到相位片上,当高斯光束中心与相位片中心完全对准时,可获得较理想的空心光束;入射光光强分布的圆对称性以及入射光中心与相位片中心的对准程度都会影响产生的空心光束的强度分布;同时,高斯光束小角度倾斜入射时,空心光的强度分布仍呈圆对称,却在观察面发生一定的位移;此外,入射光中心波长偏离相位片中心波长不大时,对产生的空心光束的强度分布几乎没有影响. 上述分析结果对用于超衍射相干反斯托克斯拉曼散射显微成像技术中理想空心光束的获取具有重要的指导意义.
-
关键词:
- 空心光束 /
- 超衍射极限 /
- 相干反斯托克斯拉曼散射 /
- 螺旋相位片
Profile of a dark hollow beam in sub-diffraction -limit imaging is of crucial importance for its spatial resolution when using the coherent anti-Stokes Raman scattering microscopy, as far as the imaging quality is concerned. Therefore, the generation of dark hollow beams through a vortex phase plate will be theoretically analyzed based on the Fresnel diffraction theory. Influences of different incidence conditions on the intensity distribution of the generated dark hollow beams are also investigated. And it is shown that a perfect dark hollow beam could be produced when a Gaussian beam is vertically incident upon a first-order vortex phase plate, with the incident light wavelength equal to that of the phase plate. However, both the circular symmetry of the incident beam's intensity distribution and the alignment between the centers of Gaussian beam and phase plate may affect the intensity distribution of the dark hollow beam, which will almost be in circular symmetry though it may shift some distance from the image center when at a small incident angle. Furthermore, the dark hollow beam's intensity distribution will scarcely change when the central wavelength deviation is very small from the incidence light and the phase plate. These results may be of great value in generation of perfect dark hollow beams in sub-diffraction –limit imaging by coherent anti-Stokes Raman scattering microscopy.-
Keywords:
- dark hollow beam /
- sub-diffraction-limit /
- coherent anti-Stokes Raman scattering microscopy /
- vortex phase plate
[1] Yamanaka M, Smith N I, Fujita K 2014 Microscopy 0 1
[2] Park J, Lee J, Namgung S, Heo K, Lee H, Hohng S, Hong S 2014 Small 10 462
[3] Hess S T, Girirajan T P K, Mason M D 2006 Biophys. J. 91 4258
[4] Rust M J, Bates M, Zhuang X W 2006 Nature Methods 3 793
[5] Hell S W, Wichmann J 1994 Opt. Lett. 19 780
[6] Cheng J X, Xie X S 2003 The J. Phys. Chem. B 108 827
[7] Evans C L, Xie X S 2008 Annu. Rev. Anal. Chem. 1 883
[8] Cheng J X, Jia Y K, Zheng G, Xie X S 2002 Biophys. J. 83 502
[9] Nan X, Potma E O, Xie X S 2006 Biophys. J. 91 728
[10] Beeker W P, GroBP, Lee C J, Cleff C, Offerhaus H L, Fallnich C, Herek J L, Boller K 2009 Opt. Express 17 22632
[11] Beeker W P, Lee C J, Boller K, GroBP, Cleff Cn, Fallnich C, Offerhaus H L, Herek J L 2010 Phys. Rev. A 81 012507
[12] Nikolaenko A, Krishnamachari V V, Potma E O 2009 Phys. Rev. A 79 013823
[13] Hajek K M, Littleton B, Turk D, McIntyre T J, Rubinsztein-Dunlop H 2010 Opt. Express 18 19263
[14] Liu W, Niu H 2011 Phys. Rev. A 83 023830
[15] Liu S L, Chen D N, Liu W, Niu H B 2013 Acta Phys. Sin. 62 184210 (in Chinese) [刘双龙, 陈丹妮, 刘伟, 牛憨笨 2013 物理学报 62 184210]
[16] Liu X, Liu W, Yin J, Qu J L, Lin Z Y, Niu H B 2011 Chin. Phys. Lett. 28 034202
[17] Yin J, Yu L Y, Liu X, Wan H, Lin Z Y, Niu H B 2011 Chin. Phys. B 20 014206
[18] Parekh S H, Lee Y J, Aamer K A, Cicerone M T 2010 Biophys. J. 99 2695
[19] Paulsen H N, Hilligse K M, Thøgersen J, Keiding S R, Larsen J J 2003 Opt. Lett. 28 1123
[20] Liu W, Chen D N, Liu S L, Niu H B 2013 Acta Phys. Sin. 62 164202 (in Chinese) [刘伟, 陈丹妮, 刘双龙, 牛憨笨 2013 物理学报 62 164202]
[21] Cai Y, Lu X, Lin Q 2003 Opt. Lett. 28 1084
[22] Zhang Q A, Wu F T, Zheng W T, Ma L 2011 Acta Phys. Sin. 60 094201 (in Chinese) [张前安, 吴逢铁, 郑维涛, 马亮 2011 物理学报 60 094201]
[23] Lee H S, Stewart B W, Choi K, Fenichel H 1994 Phys. Rev. A 49 4923
[24] Zhang M Y, Li S G, Yao Y Y, Fu B, Zhang L 2010 Chin. Phys.B 19 047103
[25] Yin J P, Gao W J, Wang H F, Long Q, Wang Y Z 2002 Chin. Phys. 11 1157
[26] Watanabe T, Fujii M, Watanabe Y, Toyama N, Iketaki Y 2004 Rev. Sci. Instrum. 75 5131
-
[1] Yamanaka M, Smith N I, Fujita K 2014 Microscopy 0 1
[2] Park J, Lee J, Namgung S, Heo K, Lee H, Hohng S, Hong S 2014 Small 10 462
[3] Hess S T, Girirajan T P K, Mason M D 2006 Biophys. J. 91 4258
[4] Rust M J, Bates M, Zhuang X W 2006 Nature Methods 3 793
[5] Hell S W, Wichmann J 1994 Opt. Lett. 19 780
[6] Cheng J X, Xie X S 2003 The J. Phys. Chem. B 108 827
[7] Evans C L, Xie X S 2008 Annu. Rev. Anal. Chem. 1 883
[8] Cheng J X, Jia Y K, Zheng G, Xie X S 2002 Biophys. J. 83 502
[9] Nan X, Potma E O, Xie X S 2006 Biophys. J. 91 728
[10] Beeker W P, GroBP, Lee C J, Cleff C, Offerhaus H L, Fallnich C, Herek J L, Boller K 2009 Opt. Express 17 22632
[11] Beeker W P, Lee C J, Boller K, GroBP, Cleff Cn, Fallnich C, Offerhaus H L, Herek J L 2010 Phys. Rev. A 81 012507
[12] Nikolaenko A, Krishnamachari V V, Potma E O 2009 Phys. Rev. A 79 013823
[13] Hajek K M, Littleton B, Turk D, McIntyre T J, Rubinsztein-Dunlop H 2010 Opt. Express 18 19263
[14] Liu W, Niu H 2011 Phys. Rev. A 83 023830
[15] Liu S L, Chen D N, Liu W, Niu H B 2013 Acta Phys. Sin. 62 184210 (in Chinese) [刘双龙, 陈丹妮, 刘伟, 牛憨笨 2013 物理学报 62 184210]
[16] Liu X, Liu W, Yin J, Qu J L, Lin Z Y, Niu H B 2011 Chin. Phys. Lett. 28 034202
[17] Yin J, Yu L Y, Liu X, Wan H, Lin Z Y, Niu H B 2011 Chin. Phys. B 20 014206
[18] Parekh S H, Lee Y J, Aamer K A, Cicerone M T 2010 Biophys. J. 99 2695
[19] Paulsen H N, Hilligse K M, Thøgersen J, Keiding S R, Larsen J J 2003 Opt. Lett. 28 1123
[20] Liu W, Chen D N, Liu S L, Niu H B 2013 Acta Phys. Sin. 62 164202 (in Chinese) [刘伟, 陈丹妮, 刘双龙, 牛憨笨 2013 物理学报 62 164202]
[21] Cai Y, Lu X, Lin Q 2003 Opt. Lett. 28 1084
[22] Zhang Q A, Wu F T, Zheng W T, Ma L 2011 Acta Phys. Sin. 60 094201 (in Chinese) [张前安, 吴逢铁, 郑维涛, 马亮 2011 物理学报 60 094201]
[23] Lee H S, Stewart B W, Choi K, Fenichel H 1994 Phys. Rev. A 49 4923
[24] Zhang M Y, Li S G, Yao Y Y, Fu B, Zhang L 2010 Chin. Phys.B 19 047103
[25] Yin J P, Gao W J, Wang H F, Long Q, Wang Y Z 2002 Chin. Phys. 11 1157
[26] Watanabe T, Fujii M, Watanabe Y, Toyama N, Iketaki Y 2004 Rev. Sci. Instrum. 75 5131
计量
- 文章访问数: 5513
- PDF下载量: 443
- 被引次数: 0