搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au的金属颗粒对二硫化钼发光增强

魏晓旭 程英 霍达 张宇涵 王军转 胡勇 施毅

引用本文:
Citation:

Au的金属颗粒对二硫化钼发光增强

魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅

PL enhancement of MoS2 by Au nanoparticles

Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi
PDF
导出引用
  • 二硫化钼(MoS2)是一种层状的二维过渡金属硫族化合物材料,从块体到单层,禁带由间接带隙变为直接带隙,由于通常机械剥落的单层MoS2是n型掺杂的,使得其发光效率仍然很低. 在本文中,采用匀胶机旋涂的方法将共振吸收峰在514 nm附近的纳米金颗粒尽可能均匀的铺在单层、双层以及多层的MoS2样品表面,发现单层和双层样品的光致发光谱(PL谱)分别增强了约30倍和2倍同时伴随着峰位的蓝移,而多层样品的发光强度也略有增强. 拉曼特性揭示了纳米金颗粒对单层和双层MoS2样品产生了明显的p型掺杂,从而增强了发光;同时纳米金颗粒的表面等离子激元效应对激发光的天线作用也是增强MoS2的光致发光的一个因素.
    Molybdenum disulphide (MoS2), a layered quasi-two dimensional (2D) chalcogenide material, is a subject of intense research because of its electronic, optical, mechanical and physicochemical properties. Since the monolayer MoS2 is a direct-gap seminconductor, it is widely used in the field of light-emitting area. However, its photoluminescence (PL) efficiency is very low due to excessive doping in monolayer MoS2 and rich non-radiative centers. In this letter, we reportits synthesis using the gold nanoparticles which have a resonance absorption peak around 514 nm. The gold nanoparticles are dispersed on the surface of the MoS2 samples by means of spin-coating. Then, we measure the photoluminescence (PL) of the monolayer, bilayer and multilayer samples before and after the spin-coating, and find a great enhancement in the PL intensity of the monolayer sample. Also the PL intensities of bi-layer and multiple layer MoS2 samples are slightly enhanced. Our work shows that gold nanoparticles may impose an obvious p-doping effect to the monolayer and bi-layer MoS2 samples to enhance the PL, and a surface plasmon polariton effect of the gold nanoparticles is also a positive factor for the enhancement.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB932900)、国家自然科学青年基金(批准号:61204050)和江苏省自然科学青年基金(批准号:BK2011435)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB932900), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61204050), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011435).
    [1]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [2]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2011 ACS Nano 6 74

    [3]

    Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris Ph, Steiner M 2013 Nano Lett. 13 1416

    [4]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815

    [5]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201

    [6]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [7]

    Liu Y L, Nan H Y, Wu X, Pan W, Wang W H, Bai J, Zhao W W, Sun L T, Wang X R, Ni Z H 2013 ACS Nano 7 4202

    [8]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [9]

    Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]

    [10]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [11]

    Dolui K, Rungger I, Sanvito S 2013 Phys. Rev. B 87 165402

    [12]

    Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642

    [13]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [14]

    Mak K F, He K L, Lee C, Lee G H, Hone J, Tony F. Heinz, Shan J 2013 Nat. Mater. 12 207

    [15]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474

    [16]

    Mouri C H, Miyauchi Y, Matsuda K 2013 Nano Lett. 13 5944

    [17]

    Shi Y M, Huang J K, Jin L M, Hsu Y T, Yu S F, Li L J, Yang H Y 2013 Sci. Rep. 3 1389

    [18]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [19]

    Li S L, Miyazaki H, Song H S, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381

    [20]

    Tongay S, Zhou J, Ataca C, Liu J, Kang J S, Matthews T S, You L, Li J, Grossman J C, Wu J Q 2013 Nano Lett. 13 2831

    [21]

    Li H, Zhang Q, Yap C C R, Tay B K, Hong T, Edwin T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

    [22]

    Chakraborty B, Bera A, Muthu D V S, Bhowmick S, Waghmare U V, Sood A K 2012 Phys. Rev. B 85 161403

    [23]

    Sreeprasad T S, Nguyen P, Kim N, Berry V 2013 Nano Lett. 13 4434

    [24]

    Lanzillo A L, Birdwell A G, Amani M, Crowne F J, Shah P B, Najmaei S, Liu Z, Ajayan P M, Lou J, Dubey M, Nayak S K, O'Regan T P 2013 Appl. Phys. Lett. 103 093102

    [25]

    Najmaei S, Liu Z, Ajayan P M, Lou J 2012 Appl. Phys. Lett. 100 013106

  • [1]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [2]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2011 ACS Nano 6 74

    [3]

    Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris Ph, Steiner M 2013 Nano Lett. 13 1416

    [4]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815

    [5]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201

    [6]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [7]

    Liu Y L, Nan H Y, Wu X, Pan W, Wang W H, Bai J, Zhao W W, Sun L T, Wang X R, Ni Z H 2013 ACS Nano 7 4202

    [8]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [9]

    Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]

    [10]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [11]

    Dolui K, Rungger I, Sanvito S 2013 Phys. Rev. B 87 165402

    [12]

    Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642

    [13]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [14]

    Mak K F, He K L, Lee C, Lee G H, Hone J, Tony F. Heinz, Shan J 2013 Nat. Mater. 12 207

    [15]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474

    [16]

    Mouri C H, Miyauchi Y, Matsuda K 2013 Nano Lett. 13 5944

    [17]

    Shi Y M, Huang J K, Jin L M, Hsu Y T, Yu S F, Li L J, Yang H Y 2013 Sci. Rep. 3 1389

    [18]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [19]

    Li S L, Miyazaki H, Song H S, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381

    [20]

    Tongay S, Zhou J, Ataca C, Liu J, Kang J S, Matthews T S, You L, Li J, Grossman J C, Wu J Q 2013 Nano Lett. 13 2831

    [21]

    Li H, Zhang Q, Yap C C R, Tay B K, Hong T, Edwin T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

    [22]

    Chakraborty B, Bera A, Muthu D V S, Bhowmick S, Waghmare U V, Sood A K 2012 Phys. Rev. B 85 161403

    [23]

    Sreeprasad T S, Nguyen P, Kim N, Berry V 2013 Nano Lett. 13 4434

    [24]

    Lanzillo A L, Birdwell A G, Amani M, Crowne F J, Shah P B, Najmaei S, Liu Z, Ajayan P M, Lou J, Dubey M, Nayak S K, O'Regan T P 2013 Appl. Phys. Lett. 103 093102

    [25]

    Najmaei S, Liu Z, Ajayan P M, Lou J 2012 Appl. Phys. Lett. 100 013106

  • [1] 王强, 杨立学, 刘北云, 闫胤洲, 陈飞, 蒋毅坚. 本征富受主型ZnO微米管光致发光的温度调控机制. 物理学报, 2020, 69(19): 197701. doi: 10.7498/aps.69.20200655
    [2] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [3] 李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可. Au纳米颗粒负载WO3纳米花复合结构的二甲苯气敏性能. 物理学报, 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [4] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应. 物理学报, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [5] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响. 物理学报, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [6] 范志东, 周子淳, 刘绰, 马蕾, 彭英才. Eu掺杂Si纳米线的光致发光特性. 物理学报, 2015, 64(14): 148103. doi: 10.7498/aps.64.148103
    [7] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征. 物理学报, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [8] 周小东, 张少锋, 周思华. Au纳米颗粒和CdTe量子点复合体系发光增强和猝灭效应. 物理学报, 2015, 64(16): 167301. doi: 10.7498/aps.64.167301
    [9] 陈峻, 范广涵, 张运炎. 选择性p型量子阱垒层掺杂在双波长发光二极管光谱调控中的作用. 物理学报, 2012, 61(8): 088502. doi: 10.7498/aps.61.088502
    [10] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [11] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [12] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [13] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [14] 刘春明, 方丽梅, 祖小涛. 钴掺杂二氧化锡纳米粉的光致发光和磁学性质. 物理学报, 2009, 58(2): 936-940. doi: 10.7498/aps.58.936
    [15] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [16] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [17] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [18] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [19] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [20] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
计量
  • 文章访问数:  7919
  • PDF下载量:  2149
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-05
  • 修回日期:  2014-06-26
  • 刊出日期:  2014-11-05

/

返回文章
返回