-
采用密度泛函理论中的B3LYP方法, 结合从头算的CCSD(T)方法对Ti2Bn(n=1–10)团簇的稳定性和电子性质进行了研究. 发现两个Ti原子的掺杂导致Bn团簇结构发生了根本性变化. 随着n的增大, Ti2Bn团簇结构生长非常规律. 所有的最稳定结构都可看成双锥结构, 并且两个Ti原子处在双锥结构的锥顶. 根据二阶差分能量分析, 得出Ti2Bn(n=1–10)团簇的幻数是6, 7和8. 进一步分析了团簇的Ti原子解离能、B原子解离能以及团簇的电子亲和势和电离势. 这些能量分析表明Ti2B6团簇既有良好的热力学稳定性, 又有良好的动力学稳定性. 应用前线轨道理论, 对Ti原子与B6之间的成键进行了分析, 了解其稳定性的根源.Structures and stabilities of Ti2Bn (n=1-10) clusters have been systematically investigated by using the density-functional theory B3LYP method and ab initio CCSD(T) method. It is found that the ground state structures of the Bn clusters are substantially modified by doping two Ti atoms. Ti2Bn clusters have very clear growth patterns, namely to form bipyramid. All the most stable Ti2Bn can be visualized as bipyramids with the two Ti atoms located at the two apexes. Ti2B6, Ti2B7 and Ti2B8 are confirmed to be the magic number clusters based on the analysis of the second-order difference of energies. The dissociation energies, vertical ionization potentials and vertical electron affinities of Ti2Bn isomers are discussed. Ti2B6 cluster is found to be stable both kinetically and thermodynamically.
-
Keywords:
- Ti2Bn cluster /
- stability /
- ab initio calculation /
- electronic structure
[1] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811
[2] Boustani I 1997 Phys. Rev. B 55 16426
[3] Tai T B, Grant D J, Nguyen M T, Dixon D A 2010 J. Phys. Chem. A 114 994
[4] Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S 2003 Angew. Chem. Int. Ed. 42 6004
[5] Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827
[6] Zhao J, Wang L, Li F, Chen Z 2010 J. Phys. Chem. A 114 9969
[7] Quarles K D, Kah C B, Gunasinghe R N, Musin R N, Wang X Q 2011 J. Chem. Theory Comput. 7 2017
[8] Li F, Jin P, Jiang D, Wang L, Zhang S B, Zhao J, Chen F 2012 J. Chem. Phys. 136 074302
[9] Lu H, Mu Y, Bai H, Chen Q, Li S D 2013 J. Chem. Phys. 138 024701
[10] Lu H, Li S D 2013 J. Chem. Phys. 139 224307
[11] Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat Commun. 5 3113
[12] Romanescu C, Galeev T R, Sergeeva A P, Li W L, Wang L S, Boldyrev A I 2012 J. Organomet. Chem. 722 148
[13] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S 2011 Angew. Chem. Int. Ed. 50 9334
[14] Galeev T R, Romanescu C, Li W L, Wang L S, Boldyrev A I 2012 Angew. Chem. Int. Ed. 51 2101
[15] Li W L, Romanescu C, Galeev T R, Piazza Z A, Boldyrev A I, Wang L S 2011 J. Am. Chem. Soc. 134 165
[16] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S 2012 Acc. Chem. Res. 46 350
[17] Luo Y H, Ge G X, Lei X L, Zhu H J, Wang X M 2008 Acta Phys. Sin. 57 5491 (in Chinese) [罗有华, 葛桂贤, 雷雪玲, 祝恒江, 王先明 2008 物理学报 57 5491]
[18] Yang Z, Yan Y L, Zhao W J, Lei X L, Ge G X, Luo Y H 2007 Acta Phys. Sin. 56 2590 (in Chinese) [杨致, 闫玉丽, 赵文杰, 雷雪玲, 葛桂贤, 罗有华 2007 物理学报 56 2590]
[19] Liu X, Zhao G F, Guo L J, Jing Q, Luo Y H 2007 Phys. Rev. A 75 063201
[20] Yao J G, Wang X W, Wang Y X 2008 Chem. Phys. 351 1
[21] Wang J F, Jia J F, Ma L J, Wu H S 2012 Acta Chim. Sin. 70 1643 (in Chinese) [王剑锋, 贾建峰, 马丽娟, 武海顺 2012 化学学报 70 1643]
[22] Jia J, Ma L, Wang J F, Wu H S 2013 J. Mol. Model. 19 3255
[23] Cheng S B, Berkdemir C, Castleman A W 2014 Phys. Chem. Chem. Phys. 16 533
[24] Li W L, Ivanov A S, Federič J, Romanescu C, Črnušák I, Boldyrev A I, Wang L S 2013 J. Chem. Phys. 139 104312
[25] Zhai H J, Wang L S, Zubarev D Y, Boldyrev A I 2006 J. Phys. Chem. A 110 1689
[26] Xie L, Li W L, Romanescu C, Huang X, Wang L S 2013 J. Chem. Phys. 138 034308
[27] Jia J, Li X, Li Y, Ma L, Wu H S 2014 Comput. Theoret. Chem. 1027 128
[28] Becke A D 1993 J. Chem. Phys. 98 5648
[29] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[30] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2010 Gaussian 09 (Revision C.01) (Wallingford: Gaussian Inc.)
[31] L J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104
[32] Ruan W, Luo W L, Yu X G, Xie A D, Wu D L 2013 Acta Phys. Sin. 62 053103 (in Chinese) [阮文, 罗文浪, 余晓光, 谢安东, 伍冬兰 2013 物理学报 62 053103]
[33] Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phys. B 23 023102
[34] Wang R X, Zhang D J, Zhu R X, Liu C B 2007 Acta Chim. Sin. 65 2092 (in Chinese) [王若曦, 张冬菊, 朱荣秀, 刘成卜 2007 化学学报 65 2092]
[35] Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101
[36] Dean J A 1992 Lange's Handbook of Chemistry (14 Ed.) (New York: McGraw-Hill) pp4.33-4.34
[37] Lin K H, Chen H T, Chen H L, Lin J S, Ju S P, Tseng C F 2013 J. Nanosci. NanoTechnol. 13 1414
[38] Gu J B, Yang X D, Wang H Q, Li H F 2012 Chin. Phys. B 21 043102
[39] Zhang S, Qin Y, Ma M F, Lu C, Li G Q 2014 Chin. Phys. B 23 013601
[40] Salazar-Villanueva M, Hernández Tejeda P H, Pal U, Rivas-Silva J F, Rodríguez Mora J I, Ascencio J A 2006 J. Phys. Chem. A 110 10274
[41] Makov G. 1995 J. Phys. Chem. A 99 9337
-
[1] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811
[2] Boustani I 1997 Phys. Rev. B 55 16426
[3] Tai T B, Grant D J, Nguyen M T, Dixon D A 2010 J. Phys. Chem. A 114 994
[4] Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S 2003 Angew. Chem. Int. Ed. 42 6004
[5] Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827
[6] Zhao J, Wang L, Li F, Chen Z 2010 J. Phys. Chem. A 114 9969
[7] Quarles K D, Kah C B, Gunasinghe R N, Musin R N, Wang X Q 2011 J. Chem. Theory Comput. 7 2017
[8] Li F, Jin P, Jiang D, Wang L, Zhang S B, Zhao J, Chen F 2012 J. Chem. Phys. 136 074302
[9] Lu H, Mu Y, Bai H, Chen Q, Li S D 2013 J. Chem. Phys. 138 024701
[10] Lu H, Li S D 2013 J. Chem. Phys. 139 224307
[11] Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat Commun. 5 3113
[12] Romanescu C, Galeev T R, Sergeeva A P, Li W L, Wang L S, Boldyrev A I 2012 J. Organomet. Chem. 722 148
[13] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S 2011 Angew. Chem. Int. Ed. 50 9334
[14] Galeev T R, Romanescu C, Li W L, Wang L S, Boldyrev A I 2012 Angew. Chem. Int. Ed. 51 2101
[15] Li W L, Romanescu C, Galeev T R, Piazza Z A, Boldyrev A I, Wang L S 2011 J. Am. Chem. Soc. 134 165
[16] Romanescu C, Galeev T R, Li W L, Boldyrev A I, Wang L S 2012 Acc. Chem. Res. 46 350
[17] Luo Y H, Ge G X, Lei X L, Zhu H J, Wang X M 2008 Acta Phys. Sin. 57 5491 (in Chinese) [罗有华, 葛桂贤, 雷雪玲, 祝恒江, 王先明 2008 物理学报 57 5491]
[18] Yang Z, Yan Y L, Zhao W J, Lei X L, Ge G X, Luo Y H 2007 Acta Phys. Sin. 56 2590 (in Chinese) [杨致, 闫玉丽, 赵文杰, 雷雪玲, 葛桂贤, 罗有华 2007 物理学报 56 2590]
[19] Liu X, Zhao G F, Guo L J, Jing Q, Luo Y H 2007 Phys. Rev. A 75 063201
[20] Yao J G, Wang X W, Wang Y X 2008 Chem. Phys. 351 1
[21] Wang J F, Jia J F, Ma L J, Wu H S 2012 Acta Chim. Sin. 70 1643 (in Chinese) [王剑锋, 贾建峰, 马丽娟, 武海顺 2012 化学学报 70 1643]
[22] Jia J, Ma L, Wang J F, Wu H S 2013 J. Mol. Model. 19 3255
[23] Cheng S B, Berkdemir C, Castleman A W 2014 Phys. Chem. Chem. Phys. 16 533
[24] Li W L, Ivanov A S, Federič J, Romanescu C, Črnušák I, Boldyrev A I, Wang L S 2013 J. Chem. Phys. 139 104312
[25] Zhai H J, Wang L S, Zubarev D Y, Boldyrev A I 2006 J. Phys. Chem. A 110 1689
[26] Xie L, Li W L, Romanescu C, Huang X, Wang L S 2013 J. Chem. Phys. 138 034308
[27] Jia J, Li X, Li Y, Ma L, Wu H S 2014 Comput. Theoret. Chem. 1027 128
[28] Becke A D 1993 J. Chem. Phys. 98 5648
[29] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[30] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2010 Gaussian 09 (Revision C.01) (Wallingford: Gaussian Inc.)
[31] L J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104
[32] Ruan W, Luo W L, Yu X G, Xie A D, Wu D L 2013 Acta Phys. Sin. 62 053103 (in Chinese) [阮文, 罗文浪, 余晓光, 谢安东, 伍冬兰 2013 物理学报 62 053103]
[33] Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phys. B 23 023102
[34] Wang R X, Zhang D J, Zhu R X, Liu C B 2007 Acta Chim. Sin. 65 2092 (in Chinese) [王若曦, 张冬菊, 朱荣秀, 刘成卜 2007 化学学报 65 2092]
[35] Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101
[36] Dean J A 1992 Lange's Handbook of Chemistry (14 Ed.) (New York: McGraw-Hill) pp4.33-4.34
[37] Lin K H, Chen H T, Chen H L, Lin J S, Ju S P, Tseng C F 2013 J. Nanosci. NanoTechnol. 13 1414
[38] Gu J B, Yang X D, Wang H Q, Li H F 2012 Chin. Phys. B 21 043102
[39] Zhang S, Qin Y, Ma M F, Lu C, Li G Q 2014 Chin. Phys. B 23 013601
[40] Salazar-Villanueva M, Hernández Tejeda P H, Pal U, Rivas-Silva J F, Rodríguez Mora J I, Ascencio J A 2006 J. Phys. Chem. A 110 10274
[41] Makov G. 1995 J. Phys. Chem. A 99 9337
计量
- 文章访问数: 5220
- PDF下载量: 615
- 被引次数: 0