搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LiNbO3晶体界面非线性表面波的研究

陈卫军 卢克清 惠娟利 王春香 于会敏 胡凯

引用本文:
Citation:

LiNbO3晶体界面非线性表面波的研究

陈卫军, 卢克清, 惠娟利, 王春香, 于会敏, 胡凯

Study on nonlinear surface waves along the boundary of LiNbO3 crystals

Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Wang Chun-Xiang, Yu Hui-Min, Hu Kai
PDF
导出引用
  • 理论和实验研究了扩散和光伏机理下LiNbO3晶体界面非线性表面波的传播. 改变传播常数可以得到不同振荡周期的表面波模, 光波的能量随传播常数的递增而单调地递增.本文的实验结果与理论分析能很好地符合. 实验结果还表明, 增加入射光功率可缩短表面波的产生, 增大入射光束与晶体正c轴的夹角(小于90°)可提高表面波的激发效率.
    The propagation of nonlinear surface waves along the boundary of LiNbO3 crystals with diffusion and photovoltaic nonlinearities is investigated theoretically and experimentally. Surface waves with different oscillating period are obtained by changing the values of the propagation constant, and the energy of surface waves would increase monotonically with the propagation constant. Our experimental results are in good agreement with the theoretical analysis. Experimental results show also that the generation of surface waves can be shortened by increasing the power of the input beam; and the excitation efficiency of the surface waves can be enhanced by increasing the angle (less than 90 degree) between the input beam and the crystal c-axis.
    • 基金项目: 天津市自然科学基金(批准号: 13JCYBJC16400)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Tianjin Province, China (Grant No. 13JCYBJC16400).
    [1]

    Segev M, Valley G C, Crosignani B, Porto P Di, Yariv A 1994 Phys. Rev. Lett. 73 3211

    [2]

    She W L, Chan C W, Lee W K 2001 Opt. Lett. 26 1093

    [3]

    Segev M, Valley G C, Bashaw M C, Taya M, Fejer M M 1997 J. Opt. Soc. Am. B 14 1772

    [4]

    Lu K Q, Tang T T, Zhang Y P 2000 Phys. Rev.A 61 053822

    [5]

    Wang H C, She W L 2005 Chin. Phys. Lett. 22 128

    [6]

    Liu J S, Lu K Q 1999 J. Opt. Soc. Am. B 16 550

    [7]

    Fazio E, Renzi F, Rinaldi R, Bertolotti M, Chauvet M, Ramadan W, Petris A, Vlad V I 2004 Appl. Phys. Lett. 85 2193

    [8]

    Konar S, Soumendu J, Shwetanshumala S 2007 Opt. Commun. 273 324

    [9]

    Sheu F W, Shih M F 2001 J. Opt. Soc. Am. B 18 785

    [10]

    Lu K Q, Li K H, Zhang Y P, Yuan C Z, Miao C Y, Chen L, Xu J J 2010 Opt. Commun. 283 4741

    [11]

    Segev M, Agranat A J 1997 Opt. Lett. 22 1299

    [12]

    Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901

    [13]

    Zhao C, Ma X K, Wang J, Lu D Q, Hu W 2013 Acta Phys. Sin. 62 094213 (in Chinese) [赵璨, 马学凯, 王靖, 陆大全, 胡巍 2013 物理学报 62 094213]

    [14]

    Yin G Y, Zheng J B, Yang X Y, Dong L W 2010 Chin. Phys. B 19 044206

    [15]

    Cronin-Golomb M 1995 Opt. Lett. 20 2075

    [16]

    Liu S M, Zhang G Q, Sun Q, Xu J J, Zhang G Y, Tong Y C 1996 Chin. Phys. Lett. 13 737

    [17]

    Kang H Z, Zhang T H, Ma H H, Lou C B, Liu S M, Tian J G, Xu J J 2010 Opt. Lett. 35 1605

    [18]

    Garcia-Quirino G S, Sanchez-Mondragon J J, Stepanov S 1995 Phys. Rev. A 51 1571

    [19]

    Garcia-Quirino G S, Sanchez-Mondragon J J, Stepanov S 1996 J. Opt. Soc. Am. B 13 2530

    [20]

    Aleshkevich V A, Kartashov Y. V, Egorov A A, Vysloukh V A 2001 Phys. Rev. E 64 573

    [21]

    Usievich B A, Nurligareev D K, Sychugov V A, Ivleva L I, Lykov P A, Bogodaev N V 2010 Quantum Electron. 40 437

    [22]

    Yang D P, Chen Z P, Zhao F, Yu H Y, Zhang T H, Tian J G, Xu J J 2013 Opt. Lett. 38 3093

    [23]

    Usievich B A, Nurligareev D K, Sychugov V A, Ivleva L I, Lykov P A, Bogodaev N V 2011 Quantum Electron. 41 262

    [24]

    Chen W J, Lu K Q, Hui J L, Feng T R, Liu S Q, Niu P J, Yu L Y 2013 Opt. Express. 21 15595

    [25]

    Sun T T, Lu K Q, Chen W J, Yao F X, Niu P J, Yu L Y 2013 Acta Phys. Sin. 62 030303 (in Chinese) [孙彤彤, 卢克清, 陈卫军, 姚风雪, 牛萍娟, 于莉媛 2013 物理学报 62 030303]

    [26]

    Luo Z H, Liu F L, Xu Y H, Liu H Y, Zhang T H, Xu J J, Tian J G 2013 Opt. Express. 21 15075

    [27]

    Lu K Q, Wang C X, Lu P Y, Chen W J, Zhang Y Q, Zhang Y P 2013 Opt. Commun. 295 203

    [28]

    Kartashov Y V, Vysloukh V A, Torner L 2008 Opt. Lett. 33 773

    [29]

    Shen M, Ruan L X, Chen X, Shi J L, Ding H X, Xi N, Wang Q 2010 J. Opt. 12 085201

    [30]

    Feng T R, Lu K Q, Chen W J, Liu S Q, Niu P J, Yu L Y 2013 Acta Phys. Sin. 62 234205 (in Chinese) [冯天闰, 卢克清, 陈卫军, 刘书芹, 牛萍娟, 于莉媛 2013 物理学报 62 234205]

  • [1]

    Segev M, Valley G C, Crosignani B, Porto P Di, Yariv A 1994 Phys. Rev. Lett. 73 3211

    [2]

    She W L, Chan C W, Lee W K 2001 Opt. Lett. 26 1093

    [3]

    Segev M, Valley G C, Bashaw M C, Taya M, Fejer M M 1997 J. Opt. Soc. Am. B 14 1772

    [4]

    Lu K Q, Tang T T, Zhang Y P 2000 Phys. Rev.A 61 053822

    [5]

    Wang H C, She W L 2005 Chin. Phys. Lett. 22 128

    [6]

    Liu J S, Lu K Q 1999 J. Opt. Soc. Am. B 16 550

    [7]

    Fazio E, Renzi F, Rinaldi R, Bertolotti M, Chauvet M, Ramadan W, Petris A, Vlad V I 2004 Appl. Phys. Lett. 85 2193

    [8]

    Konar S, Soumendu J, Shwetanshumala S 2007 Opt. Commun. 273 324

    [9]

    Sheu F W, Shih M F 2001 J. Opt. Soc. Am. B 18 785

    [10]

    Lu K Q, Li K H, Zhang Y P, Yuan C Z, Miao C Y, Chen L, Xu J J 2010 Opt. Commun. 283 4741

    [11]

    Segev M, Agranat A J 1997 Opt. Lett. 22 1299

    [12]

    Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901

    [13]

    Zhao C, Ma X K, Wang J, Lu D Q, Hu W 2013 Acta Phys. Sin. 62 094213 (in Chinese) [赵璨, 马学凯, 王靖, 陆大全, 胡巍 2013 物理学报 62 094213]

    [14]

    Yin G Y, Zheng J B, Yang X Y, Dong L W 2010 Chin. Phys. B 19 044206

    [15]

    Cronin-Golomb M 1995 Opt. Lett. 20 2075

    [16]

    Liu S M, Zhang G Q, Sun Q, Xu J J, Zhang G Y, Tong Y C 1996 Chin. Phys. Lett. 13 737

    [17]

    Kang H Z, Zhang T H, Ma H H, Lou C B, Liu S M, Tian J G, Xu J J 2010 Opt. Lett. 35 1605

    [18]

    Garcia-Quirino G S, Sanchez-Mondragon J J, Stepanov S 1995 Phys. Rev. A 51 1571

    [19]

    Garcia-Quirino G S, Sanchez-Mondragon J J, Stepanov S 1996 J. Opt. Soc. Am. B 13 2530

    [20]

    Aleshkevich V A, Kartashov Y. V, Egorov A A, Vysloukh V A 2001 Phys. Rev. E 64 573

    [21]

    Usievich B A, Nurligareev D K, Sychugov V A, Ivleva L I, Lykov P A, Bogodaev N V 2010 Quantum Electron. 40 437

    [22]

    Yang D P, Chen Z P, Zhao F, Yu H Y, Zhang T H, Tian J G, Xu J J 2013 Opt. Lett. 38 3093

    [23]

    Usievich B A, Nurligareev D K, Sychugov V A, Ivleva L I, Lykov P A, Bogodaev N V 2011 Quantum Electron. 41 262

    [24]

    Chen W J, Lu K Q, Hui J L, Feng T R, Liu S Q, Niu P J, Yu L Y 2013 Opt. Express. 21 15595

    [25]

    Sun T T, Lu K Q, Chen W J, Yao F X, Niu P J, Yu L Y 2013 Acta Phys. Sin. 62 030303 (in Chinese) [孙彤彤, 卢克清, 陈卫军, 姚风雪, 牛萍娟, 于莉媛 2013 物理学报 62 030303]

    [26]

    Luo Z H, Liu F L, Xu Y H, Liu H Y, Zhang T H, Xu J J, Tian J G 2013 Opt. Express. 21 15075

    [27]

    Lu K Q, Wang C X, Lu P Y, Chen W J, Zhang Y Q, Zhang Y P 2013 Opt. Commun. 295 203

    [28]

    Kartashov Y V, Vysloukh V A, Torner L 2008 Opt. Lett. 33 773

    [29]

    Shen M, Ruan L X, Chen X, Shi J L, Ding H X, Xi N, Wang Q 2010 J. Opt. 12 085201

    [30]

    Feng T R, Lu K Q, Chen W J, Liu S Q, Niu P J, Yu L Y 2013 Acta Phys. Sin. 62 234205 (in Chinese) [冯天闰, 卢克清, 陈卫军, 刘书芹, 牛萍娟, 于莉媛 2013 物理学报 62 234205]

  • [1] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [2] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [3] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [4] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义. 高效率三倍频产生355 nm皮秒激光的实验研究. 物理学报, 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [5] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [6] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响. 物理学报, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [7] 王松岭, 刘梅, 王思思, 吴正人. 随时间变化的非平整壁面对液膜表面波演化特性的影响. 物理学报, 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [8] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [9] 孙彤彤, 卢克清, 陈卫军, 姚风雪, 牛萍娟, 于莉媛. 在金属与光折变晶体界面形成的表面波研究. 物理学报, 2013, 62(3): 034204. doi: 10.7498/aps.62.034204
    [10] 冯天闰, 卢克清, 陈卫军, 刘书芹, 牛萍娟, 于莉媛. 线性电介质和中心对称光折变晶体界面表面波的研究. 物理学报, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [11] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状. 物理学报, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [12] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [13] 孙博, 刘劲松, 凌福日, 王可嘉, 朱大庆, 姚建铨. 基于钽酸锂晶体的太赫兹波参量振荡器运转特性的研究. 物理学报, 2009, 58(3): 1745-1751. doi: 10.7498/aps.58.1745
    [14] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [15] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [16] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性. 物理学报, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [17] 许 婕, 陈理想, 郑国梁, 王红成, 佘卫龙. 双折射晶体中旋光效应的耦合波理论. 物理学报, 2007, 56(8): 4615-4621. doi: 10.7498/aps.56.4615
    [18] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [19] 张显斌, 施 卫. 用短谐振腔结构优化THz电磁波参量振荡器的输出特性. 物理学报, 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [20] 王少宏, B.Ferguson, 张存林, 张希成. Terahertz波计算机辅助三维层析成像技术. 物理学报, 2003, 52(1): 120-124. doi: 10.7498/aps.52.120
计量
  • 文章访问数:  3326
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-19
  • 修回日期:  2014-07-06
  • 刊出日期:  2015-01-05

LiNbO3晶体界面非线性表面波的研究

  • 1. 天津工业大学, 电子与信息工程学院, 天津 300387
    基金项目: 天津市自然科学基金(批准号: 13JCYBJC16400)资助的课题.

摘要: 理论和实验研究了扩散和光伏机理下LiNbO3晶体界面非线性表面波的传播. 改变传播常数可以得到不同振荡周期的表面波模, 光波的能量随传播常数的递增而单调地递增.本文的实验结果与理论分析能很好地符合. 实验结果还表明, 增加入射光功率可缩短表面波的产生, 增大入射光束与晶体正c轴的夹角(小于90°)可提高表面波的激发效率.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回