搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效率钙钛矿太阳电池发展中的关键问题

杨旭东 陈汉 毕恩兵 韩礼元

引用本文:
Citation:

高效率钙钛矿太阳电池发展中的关键问题

杨旭东, 陈汉, 毕恩兵, 韩礼元

Key issues in highly efficient perovskite solar cells

Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan
PDF
导出引用
  • 钙钛矿太阳电池的迅速发展为解决未来能源问题带来一线曙光. 但是, 钙钛矿太阳电池在高效率电池器件的可重现性、稳定性以及性能评估等方面还面临着很多问题, 严重制约其今后的发展. 本文综述了钙钛矿太阳电池面世以来发生的重要进展, 以及存在的几个关键性问题. 从器件基本结构和基本工作原理出发, 本文重点讨论了光吸收层的光谱和形貌等性质对器件性能和可重现性的影响, 阐明了电子传输层和空穴阻隔层的重要作用, 论述了空穴传输层的相关进展以及其对器件稳定性的影响. 通过对以上关键问题的讨论和总结, 本文对钙钛矿太阳电池未来的研究发展进行了展望.
    Preparation of Perovskite solar cell, an emerging low-cost photovoltaic technology in rapid development, has provided a ray of hope to solve the energy problem. However, its low reproducibility and stability limit the wide application of this potential technology. In this review, we summarize the recent progress with a focused discussion on some key issues in the development of perovskite solar cells. Starting from the analysis of basic structure and working principles, we first discuss the perovskite-based light harvesting layer and the general strategy to control its spectrum response. We also demonstrate the effect of film morphology on the device performance and the reproducibility which requires very uniform thin films. Then we discuss the major function of electron transporting layer and hole blocking layer, and point out the importance of compact hole blocking layer with less nano-scaled pinholes. For the hole transporting layer, we focus the discussion on the stability problem induced by widely used dopants that can improve the hole conductivity in the hole transporting layer while the dopants' deliquescent behavior also can induce the decomposition of perovskite-based light harvesting layer with a rapid degradation of the whole device. The potential approaches to solve this stability problem, such as using a dopant-free hole transporting material or making device without any hole transporting materials, are also discussed. Finally, we are in prospect of overcoming the main challenges in the future research for high performance perovskite solar cells.
    • 基金项目: 上海交通大学211三期工程项目(批准号: WS3116205009)资助的课题.
    • Funds: Project supported by the Project 211, Shanghai Jiao Tong University, China (Grant No. WS3116205009).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Scientific Reports 2 7

    [4]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [5]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [7]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [8]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [9]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [10]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295

    [11]

    Luo J, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Graetzel M 2014 Science 345 1593

    [12]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [13]

    Liu D Y, Kelly T L 2014 Nat. Photonics 8 133

    [14]

    Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J, Grätzel M 2014 Angew. Chem.-Int. Edit. 53 3151

    [15]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M, De Angelis F 2014 Nano Lett. 14 3608

    [16]

    Hanusch F C, Wiesenmayer E, Mankel E, Binek A, Angloher P, Fraunhofer C, Giesbrecht N, Feckl J M, Jaegermann W, Johrendt D, Bein T, Docampo P 2014 J. Phys. Chem. Lett. 5 2791

    [17]

    Koh T M, Fu K W, Fang Y N, Chen S, Sum T C, Mathews N, Mhaisalkar S G, Boix P P, Baikie T 2014 J. Phys. Chem. C 118 16458

    [18]

    Baikie T, Fang Y N, Kadro J M, Schreyer M, Wei F X, Mhaisalkar S G, Graetzel M, White T J 2013 J. Mater. Chem. A 1 5628

    [19]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019

    [20]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982

    [21]

    Lv S L, Pang S P, Zhou Y Y, Padture N P, Hu H, Wang L, Zhou X H, Zhu H M, Zhang L X, Huang C S, Cui G L 2014 Phys. Chem. Chem. Phys. 16 19206

    [22]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991

    [23]

    Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y 2014 Nanoscale 6 6679

    [24]

    Hsu H L, Chen C P, Chang J Y, Yu Y Y, Shen Y K 2014 Nanoscale 6 10281

    [25]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [26]

    Dualeh A, Tetreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250

    [27]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [28]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Il Seol S 2014 Nat. Mater. 13 897

    [29]

    Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q, Han L Y 2014 Energy Environ. Sci. 7 2934

    [30]

    Conings B, Baeten L, De Dobbelaere C, D'Haen J, Manca J, Boyen H G 2014 Adv. Mater. 26 2041

    [31]

    Qiu J H, Qiu Y C, Yan K Y, Zhong M, Mu C, Yan H, Yang S H 2013 Nanoscale 5 3245

    [32]

    Gao X F, Li J Y, Baker J, Hou Y, Guan D S, Chen J H, Yuan C 2014 Chem. Commun. 50 6368

    [33]

    Bi D Q, Boschloo G, Schwarzmuller S, Yang L, Johansson E M J, Hagfeldt A 2013 Nanoscale 5 11686

    [34]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Sang S I 2014 Energy Environ. Sci. 7 2642

    [35]

    Wu Y, Yang X, Chen H, Zhang K, Qin C, Liu J, Peng W, Islam A, Bi E, Ye F, Yin M, Zhang P, Han L 2014 Applied Physics Express 7 4

    [36]

    Zheng L L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F, Qu B, Gong Q H 2014 Chem. Commun. 50 11196

    [37]

    Zhang F Q, Yang X C, Wang H X, Cheng M, Zhao J H, Sun L C 2014 ACS Appl. Mater. Interfaces 6 16140

    [38]

    Li W Z, Li J L, Wang L D, Niu G D, Gao R, Qiu Y 2013 J. Mater. Chem. A 1 11735

    [39]

    Noh J H, Jeon N J, Choi Y C, Nazeeruddin M K, Graetzel M, Seok S I 2013 J. Mater. Chem. A 1 11842

    [40]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nat. Photonics 7 487

    [41]

    Bi D Q, Boschloo G, Hagfeldt A 2014 Nano 9 7

    [42]

    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy & Environmental Science 7 2963

    [43]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [44]

    Aharon S, El Cohen B, Etgar L 2014 J. Phys. Chem. C 118 17160

    [45]

    Xu Y, Shi J, Lv S, Zhu L, Dong J, Wu H, Xiao Y, Luo Y, Wang S, Li D, Li X, Meng Q 2014 Acs Applied Materials & Interfaces 6 5651

    [46]

    Abu Laban W, Etgar L 2013 Energy Environ. Sci. 6 3249

    [47]

    Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711

    [48]

    Yang X D, Yanagida M, Han L Y 2013 Energy & Environmental Science 6 54

    [49]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [50]

    Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumueller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690

    [51]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photonics 8 489

    [52]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 3061

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Scientific Reports 2 7

    [4]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [5]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [6]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [7]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [8]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [9]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [10]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295

    [11]

    Luo J, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Graetzel M 2014 Science 345 1593

    [12]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [13]

    Liu D Y, Kelly T L 2014 Nat. Photonics 8 133

    [14]

    Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J, Grätzel M 2014 Angew. Chem.-Int. Edit. 53 3151

    [15]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Grätzel M, De Angelis F 2014 Nano Lett. 14 3608

    [16]

    Hanusch F C, Wiesenmayer E, Mankel E, Binek A, Angloher P, Fraunhofer C, Giesbrecht N, Feckl J M, Jaegermann W, Johrendt D, Bein T, Docampo P 2014 J. Phys. Chem. Lett. 5 2791

    [17]

    Koh T M, Fu K W, Fang Y N, Chen S, Sum T C, Mathews N, Mhaisalkar S G, Boix P P, Baikie T 2014 J. Phys. Chem. C 118 16458

    [18]

    Baikie T, Fang Y N, Kadro J M, Schreyer M, Wei F X, Mhaisalkar S G, Graetzel M, White T J 2013 J. Mater. Chem. A 1 5628

    [19]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019

    [20]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982

    [21]

    Lv S L, Pang S P, Zhou Y Y, Padture N P, Hu H, Wang L, Zhou X H, Zhu H M, Zhang L X, Huang C S, Cui G L 2014 Phys. Chem. Chem. Phys. 16 19206

    [22]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991

    [23]

    Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S, Kim J Y 2014 Nanoscale 6 6679

    [24]

    Hsu H L, Chen C P, Chang J Y, Yu Y Y, Shen Y K 2014 Nanoscale 6 10281

    [25]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [26]

    Dualeh A, Tetreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250

    [27]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [28]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Il Seol S 2014 Nat. Mater. 13 897

    [29]

    Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q, Han L Y 2014 Energy Environ. Sci. 7 2934

    [30]

    Conings B, Baeten L, De Dobbelaere C, D'Haen J, Manca J, Boyen H G 2014 Adv. Mater. 26 2041

    [31]

    Qiu J H, Qiu Y C, Yan K Y, Zhong M, Mu C, Yan H, Yang S H 2013 Nanoscale 5 3245

    [32]

    Gao X F, Li J Y, Baker J, Hou Y, Guan D S, Chen J H, Yuan C 2014 Chem. Commun. 50 6368

    [33]

    Bi D Q, Boschloo G, Schwarzmuller S, Yang L, Johansson E M J, Hagfeldt A 2013 Nanoscale 5 11686

    [34]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Sang S I 2014 Energy Environ. Sci. 7 2642

    [35]

    Wu Y, Yang X, Chen H, Zhang K, Qin C, Liu J, Peng W, Islam A, Bi E, Ye F, Yin M, Zhang P, Han L 2014 Applied Physics Express 7 4

    [36]

    Zheng L L, Chung Y H, Ma Y Z, Zhang L P, Xiao L X, Chen Z J, Wang S F, Qu B, Gong Q H 2014 Chem. Commun. 50 11196

    [37]

    Zhang F Q, Yang X C, Wang H X, Cheng M, Zhao J H, Sun L C 2014 ACS Appl. Mater. Interfaces 6 16140

    [38]

    Li W Z, Li J L, Wang L D, Niu G D, Gao R, Qiu Y 2013 J. Mater. Chem. A 1 11735

    [39]

    Noh J H, Jeon N J, Choi Y C, Nazeeruddin M K, Graetzel M, Seok S I 2013 J. Mater. Chem. A 1 11842

    [40]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nat. Photonics 7 487

    [41]

    Bi D Q, Boschloo G, Hagfeldt A 2014 Nano 9 7

    [42]

    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy & Environmental Science 7 2963

    [43]

    Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [44]

    Aharon S, El Cohen B, Etgar L 2014 J. Phys. Chem. C 118 17160

    [45]

    Xu Y, Shi J, Lv S, Zhu L, Dong J, Wu H, Xiao Y, Luo Y, Wang S, Li D, Li X, Meng Q 2014 Acs Applied Materials & Interfaces 6 5651

    [46]

    Abu Laban W, Etgar L 2013 Energy Environ. Sci. 6 3249

    [47]

    Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711

    [48]

    Yang X D, Yanagida M, Han L Y 2013 Energy & Environmental Science 6 54

    [49]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [50]

    Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumueller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690

    [51]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photonics 8 489

    [52]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 3061

  • [1] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [2] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [3] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [4] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [5] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [6] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [7] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [8] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [9] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [10] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [11] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [12] 陈亮, 张利伟, 陈永生. 无铅和少铅的有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [13] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [14] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [15] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [16] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [17] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [18] 曹士英, 张志刚, 柴 路, 王清月. 钛宝石飞秒激光振荡器的稳定性改善. 物理学报, 2008, 57(5): 2971-2975. doi: 10.7498/aps.57.2971
    [19] 谢 莉, 雷银照. 线性瞬态涡流电磁场定解问题解的唯一性和稳定性. 物理学报, 2006, 55(9): 4397-4406. doi: 10.7498/aps.55.4397
    [20] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
计量
  • 文章访问数:  7784
  • PDF下载量:  4014
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-13
  • 修回日期:  2014-12-18
  • 刊出日期:  2015-02-05

高效率钙钛矿太阳电池发展中的关键问题

  • 1. 上海交通大学材料科学与工程学院, 金属基复合材料国家重点实验室, 上海 200240
    基金项目: 上海交通大学211三期工程项目(批准号: WS3116205009)资助的课题.

摘要: 钙钛矿太阳电池的迅速发展为解决未来能源问题带来一线曙光. 但是, 钙钛矿太阳电池在高效率电池器件的可重现性、稳定性以及性能评估等方面还面临着很多问题, 严重制约其今后的发展. 本文综述了钙钛矿太阳电池面世以来发生的重要进展, 以及存在的几个关键性问题. 从器件基本结构和基本工作原理出发, 本文重点讨论了光吸收层的光谱和形貌等性质对器件性能和可重现性的影响, 阐明了电子传输层和空穴阻隔层的重要作用, 论述了空穴传输层的相关进展以及其对器件稳定性的影响. 通过对以上关键问题的讨论和总结, 本文对钙钛矿太阳电池未来的研究发展进行了展望.

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回