搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响

郭文昊 肖惠 门传玲

引用本文:
Citation:

SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响

郭文昊, 肖惠, 门传玲

Effects of protons within SiO2 solid-state electrolyte on performances of oxide electric-double-layer thin film transistor

Guo Wen-Hao, Xiao Hui, Men Chuan-Ling
PDF
导出引用
  • 本文采用等离子体增强化学气相沉积技术(PECVD)在室温条件下制备了具有双电层效应的二氧化硅(SiO2) 固体电解质薄膜, 并以此SiO2薄膜作为栅介质制备了氧化铟锌(IZO)双电层薄膜晶体管. 本文系统地研究了SiO2固体电解质中的质子特性对双电层薄膜晶体管性能的影响, 研究结果表明, 经过纯水浸泡的SiO2固体电解质薄膜可以诱导出较多的可迁移质子, 因此表现出较大的双电层电容. 由于SiO2固体电解质薄膜具有质子迁移特性, 晶体管的转移特性曲线呈现出逆时针方向的洄滞现象, 并且这一洄滞效应随着栅极电压扫描速率的增加而增大. 进一步对薄膜晶体管的偏压稳定性进行测试, 发现晶体管的阈值电压的变化遵循了拉升指数函数(stretched exponential function)关系.
    SiO2-based solid state electrolyte films are deposited at room temperature by using the plasma-enhanced chemical vapor deposition (PECVD) technique. An electric-double-layer (EDL) effect has been observed. Then, indium-zinc-oxide thin-film transistors (IZO TFTs) are fabricated by using such SiO2 films as dielectrics in a self-assembling process through a shadow mask. The IZO films for source/drain electrodes and channel are deposited on the nanogranular SiO2 film by RF sputtering the IZO target in an Ar ambient. Such TFTs exhibit a good performance at an ultralow operation voltage of 1.5 V, with a high field-effect mobility of 11.9 cm2/Vs, a small subthreshold swing of 94.5 mV/decade, and a large current on-off ratio of 7.14×106. Effects of protons in the SiO2-based solid state electrolyte films on the electrical performances of the IZO TFTs are also studied. It is observed that a big EDL capacitance can be obtained for SiO2 films dipped in pure water, as a result of the fact that there are more protons in such SiO2 films. Because of the migration of protons in SiO2 electrolytes, an anti-clockwise hysteresis is observed on the transfer curve. Moreover, a bigger hysteresis is observed at a higher gate voltage scan rate. Gate bias stressing stabilities are also studied the shifts in threshold voltage are observed to obey a stretched exponential function.
    • 基金项目: 国家自然科学基金(批准号: 11474293)、浙江省自然科学基金(批准号: LY14A040009)、 宁波市自然科学基金(批准号: 2014A610145)、上海理工大学国家项目(批准号: 14XPM06)和上海市自然科学基金(批准号: 13ZR1428200) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11474293), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14A040009), the Ningbo Natural Science Foundation of China (Grant No. 2014A610145), the National Project subject of University of Shanghai for Science and Technology of China(Grant No. 14XPM06), and the Shanghai Natural Science Foundation of China (Grant No. 13ZR1428200).
    [1]

    Arai T, Morosawa N, Tokunaga K, Terai Y, Fukumoto E, Fujimori T, Sasaoka T 2011 J. Soc. Inf. Displa. 19 205

    [2]

    Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Goncalves A M F, Marques A J S, Pereira L M N, Martins R F P 2005 Adv. Mater. 17 590

    [3]

    Xu H, Lan L F, Li M, Luo D X, Xiao P, Lin Z G, Ning H L, Peng J B 2014 Acta Phys. Sin. 63 038501 (in Chinese) [徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪 2014 物理学报 63 038501]

    [4]

    Chen Y Y, Wang X, Cai X K, Yuan Z J, Zhu X M, Qiu D J, Wu H Z 2014 Chin. Phys. B 23 026101

    [5]

    Hoffman R L, Norris B J, Wager J F 2003 Appl. Phys. Lett. 82 733

    [6]

    Suresh A, Wellenius P, Dhawan A, Muth J 2007 Appl. Phys. Lett. 90 123512

    [7]

    Ozel T, Gaur A, Rogers J A, Shim M 2005 Nano. Lett. 5 905

    [8]

    Thiemann S, Sachnov S. Porscha S, Wasserscheid P, Zaumseil J 2012 J. Phys. Chem. C 116 13536

    [9]

    Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305 (in Chinese) [朱德明, 门传玲, 曹敏, 吴国栋 2013 物理学报 62 117305]

    [10]

    Zhu L Q, Wu G D, Zhou Z M, Dou W, Zhang H L, Wan Q 2013 Appl. Phys. Lett. 102 043501

    [11]

    Guo D, Zhuo M, Zhang X, Xu C, Jiang J, Gao F, Wan Q, Li Q, Wang T 2013 Anal. Chim. Acta 773 83

    [12]

    Zhu L Q, Wu G D, Zhou Z M, Dou W, Zhang H L 2013 Nanoscale 5 1980

    [13]

    Chen H S, Sun Z Y, Shao J C 2011 Bull. Chin. Ceram. Soc. 30 0934 (in Chinese) [陈和生, 孙振亚, 邵景昌 2011 硅酸盐通报 30 0934]

    [14]

    Jiang J 2012 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [蒋杰 2012 博士学位论文 (长沙: 湖南大学)]

    [15]

    Liu Y R, Su J, Lai P T, Yao R H 2014 Chin. Phys. B 23 068501

    [16]

    Lee S W, Suh D S, Lee S Y, Lee Y H 2014 Appl. Phys. Lett. 104 163506

    [17]

    Roh J, Kang C M, Kwak J, Lee C, Jung B J 2014 Appl. Phys. Lett. 104 173301

  • [1]

    Arai T, Morosawa N, Tokunaga K, Terai Y, Fukumoto E, Fujimori T, Sasaoka T 2011 J. Soc. Inf. Displa. 19 205

    [2]

    Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Goncalves A M F, Marques A J S, Pereira L M N, Martins R F P 2005 Adv. Mater. 17 590

    [3]

    Xu H, Lan L F, Li M, Luo D X, Xiao P, Lin Z G, Ning H L, Peng J B 2014 Acta Phys. Sin. 63 038501 (in Chinese) [徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪 2014 物理学报 63 038501]

    [4]

    Chen Y Y, Wang X, Cai X K, Yuan Z J, Zhu X M, Qiu D J, Wu H Z 2014 Chin. Phys. B 23 026101

    [5]

    Hoffman R L, Norris B J, Wager J F 2003 Appl. Phys. Lett. 82 733

    [6]

    Suresh A, Wellenius P, Dhawan A, Muth J 2007 Appl. Phys. Lett. 90 123512

    [7]

    Ozel T, Gaur A, Rogers J A, Shim M 2005 Nano. Lett. 5 905

    [8]

    Thiemann S, Sachnov S. Porscha S, Wasserscheid P, Zaumseil J 2012 J. Phys. Chem. C 116 13536

    [9]

    Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305 (in Chinese) [朱德明, 门传玲, 曹敏, 吴国栋 2013 物理学报 62 117305]

    [10]

    Zhu L Q, Wu G D, Zhou Z M, Dou W, Zhang H L, Wan Q 2013 Appl. Phys. Lett. 102 043501

    [11]

    Guo D, Zhuo M, Zhang X, Xu C, Jiang J, Gao F, Wan Q, Li Q, Wang T 2013 Anal. Chim. Acta 773 83

    [12]

    Zhu L Q, Wu G D, Zhou Z M, Dou W, Zhang H L 2013 Nanoscale 5 1980

    [13]

    Chen H S, Sun Z Y, Shao J C 2011 Bull. Chin. Ceram. Soc. 30 0934 (in Chinese) [陈和生, 孙振亚, 邵景昌 2011 硅酸盐通报 30 0934]

    [14]

    Jiang J 2012 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [蒋杰 2012 博士学位论文 (长沙: 湖南大学)]

    [15]

    Liu Y R, Su J, Lai P T, Yao R H 2014 Chin. Phys. B 23 068501

    [16]

    Lee S W, Suh D S, Lee S Y, Lee Y H 2014 Appl. Phys. Lett. 104 163506

    [17]

    Roh J, Kang C M, Kwak J, Lee C, Jung B J 2014 Appl. Phys. Lett. 104 173301

  • [1] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性. 物理学报, 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [2] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [3] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响. 物理学报, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [4] 梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋. 基于蛋清栅介质的超低压双电层薄膜晶体管. 物理学报, 2018, 67(23): 237302. doi: 10.7498/aps.67.20181539
    [5] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管. 物理学报, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [6] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [7] 郭立强, 温娟, 程广贵, 袁宁一, 丁建宁. 基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管. 物理学报, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [8] 宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪. 铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善. 物理学报, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [9] 高娅娜, 李喜峰, 张建华. 溶胶凝胶法制备高性能锆铝氧化物作为绝缘层的薄膜晶体管. 物理学报, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [10] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [11] 朱德明, 门传玲, 曹敏, 吴国栋. 基于P掺杂SiO2为栅介质的超低压侧栅薄膜晶体管. 物理学报, 2013, 62(11): 117305. doi: 10.7498/aps.62.117305
    [12] 何美林, 徐静平, 陈建雄, 刘璐. LaON/SiO2和HfON/SiO2双隧穿层MONOS存储器存储特性的比较. 物理学报, 2013, 62(23): 238501. doi: 10.7498/aps.62.238501
    [13] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [14] 侯立凯, 任玉坤, 姜洪源. 表面镀金SU-8微柱的低频电动旋转特征. 物理学报, 2013, 62(20): 200702. doi: 10.7498/aps.62.200702
    [15] 刘全生, 杨联贵, 苏洁. 微平行管道内Jeffrey流体的非定常电渗流动 . 物理学报, 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [16] 胡永刚, 夏风, 肖建中, 雷超, 李向东. 基于阻抗模型解析的氧化锆固体电解质组织结构演变模型. 物理学报, 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [17] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究. 物理学报, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [18] 袁广才, 徐征, 赵谡玲, 张福俊, 许娜, 孙钦军, 徐叙瑢. 低栅极电压控制下带有phenyltrimethoxysilane单分子自组装层的有机薄膜晶体管场效应特性研究. 物理学报, 2009, 58(7): 4941-4947. doi: 10.7498/aps.58.4941
    [19] 袁广才, 徐 征, 赵谡玲, 张福俊, 姜薇薇, 黄金昭, 宋丹丹, 朱海娜, 黄金英, 徐叙瑢. 对以并五苯和酞菁铜为不同有源层的有机薄膜晶体管特性研究. 物理学报, 2008, 57(9): 5911-5917. doi: 10.7498/aps.57.5911
    [20] 杨 涛, 何冬慧, 张磬兰, 马红孺. 电解液中带电平板与带电胶体球之间的有效相互作用. 物理学报, 2005, 54(12): 5937-5942. doi: 10.7498/aps.54.5937
计量
  • 文章访问数:  3418
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-18
  • 修回日期:  2014-11-16
  • 刊出日期:  2015-04-05

SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响

  • 1. 上海理工大学能源与动力工程学院, 上海 200093;
  • 2. 中国科学院宁波材料技术与工程研究所, 宁波 315201
    基金项目: 国家自然科学基金(批准号: 11474293)、浙江省自然科学基金(批准号: LY14A040009)、 宁波市自然科学基金(批准号: 2014A610145)、上海理工大学国家项目(批准号: 14XPM06)和上海市自然科学基金(批准号: 13ZR1428200) 资助的课题.

摘要: 本文采用等离子体增强化学气相沉积技术(PECVD)在室温条件下制备了具有双电层效应的二氧化硅(SiO2) 固体电解质薄膜, 并以此SiO2薄膜作为栅介质制备了氧化铟锌(IZO)双电层薄膜晶体管. 本文系统地研究了SiO2固体电解质中的质子特性对双电层薄膜晶体管性能的影响, 研究结果表明, 经过纯水浸泡的SiO2固体电解质薄膜可以诱导出较多的可迁移质子, 因此表现出较大的双电层电容. 由于SiO2固体电解质薄膜具有质子迁移特性, 晶体管的转移特性曲线呈现出逆时针方向的洄滞现象, 并且这一洄滞效应随着栅极电压扫描速率的增加而增大. 进一步对薄膜晶体管的偏压稳定性进行测试, 发现晶体管的阈值电压的变化遵循了拉升指数函数(stretched exponential function)关系.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回