搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转方形散射体对三角晶格磁振子晶体带结构的优化

胡晓颖 郭晓霞 胡文弢 呼和满都拉 郑晓霞 荆丽丽

引用本文:
Citation:

旋转方形散射体对三角晶格磁振子晶体带结构的优化

胡晓颖, 郭晓霞, 胡文弢, 呼和满都拉, 郑晓霞, 荆丽丽

Spin-wave band gaps created by rotating square rods in triangular lattice magnonic crystals

Hu Xiao-Ying, Guo Xiao-Xia, Hu Wen-Tao, Huhe Mandula, Zheng Xiao-Xia, Jing Li-Li
PDF
导出引用
  • 用改进的平面波展开法数值计算了正方形散射体三角排列的二维磁振子晶体当散射体旋转时的带结构. 结果显示, 同样的填充率下, 旋转正方柱散射体可以在新的频率范围内打开更多的带隙, 或者使低频带隙加宽. 说明旋转散射体可以有效地优化带隙.
    Recently, magnonic crystals which are the magnetic counterparts of photonic crystals or phononic crystals are becoming a hot area of research. In this paper, band structure of two-dimensional magnotic crystal composed of square rods triangularly arranged are calculated by using the plane-wave expansion method. Spin-wave band structures of two-dimensional magnonic crystal composed of Fe triangularly arranged Fe in an EuO matrix. The results show that when the filling ratio f=0.4, only two absolute band gaps can be found in the case of θ=0°. The first gap appears between the first band and the second band, the second gap between the sixth band and the seventh band. However, the number of band gaps can be improved by rotating the square rods through θ=25°, there are eight absolute band gaps that can be found. The first gap appears between the first band and the second band, the fifth gap between the sixth band and the seventh band. The new band gaps can be found, the second gap appears between the third band and the fourth band, the third gap between the fourth band and the fifth band, the fourth gap between the fifth band and the sixth band, the sixth gap between the seventh band and the eighth band, the seventh gap between the eighth band and the ninth band, the eighth gap between the ninth band and the tenth band. These results show that it is possible to create spin-wave gaps by rotating square rods in a two-dimensional magnotic crystal. The numerical results of the normalized gap width ΔΩ/Ωg of the first gap between the first band and the second band always changes with filling fraction f and rotational angles θ. When f=0.6 we calculated the first normalized gap width ΔΩ/Ωg. when f=0.6 and θ=0°, the first gap width ΔΩ=0.812(μ0ω/g) and the normalized gap width ΔΩ/Ωg=0.9187. The results show that from the first normalized gap widths the largest one can be found when f=0.6 and θ=5°, the first gap width ΔΩ=0.937(μ0ω/g) and the normalized gap width ΔΩ/Ωg=0.9591. The results show that the numerical, rotating square rods can make the low frequency band gap widen in the triangular lattice of two-dimensional magnonic crystal.
    • 基金项目: 内蒙古自治区高等学校科学技术研究项目(批准号: NJZY13281)资助的课题.
    • Funds: Project supported by the Higher School Science and Technology Research Projects of Inner Mongolia, China (Grant No. NJZY13281).
    [1]

    Krawczyk M, Puszkarski H 2008 Phys. Rev. B 77 054437

    [2]

    Tacchi S, Duerr G, Klos J W, Madami M, Neusser S, Gubbiotti G, Carlotti G, Krawczyk M, Grundler D 2012 Phys. Rev. Lett. 109 137202

    [3]

    Mamica S, Krawczyk M, Klos J W 2012 Adv. Cond. Mat. Phys. 2012 161387

    [4]

    Krawczyk M, Klos J W, Sokolovskyy L, Madami M 2010 J. Appl. Phys. 108 093909

    [5]

    Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S, Adeyeye A O 2009 Appl. Phys. Lett. 94 083112

    [6]

    Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S, Adeyeye A O 2010 ACS Nano 4 643

    [7]

    Krawczyk M, Puszkarski H 2008 Phys. Rev. B 77 054437

    [8]

    Kuchko A N, Sokolovskii M L, Kruglyak V V 2005 Physica B 370 73

    [9]

    Kruglyak V V, Sokolovskii M L, Tkachenko V S, Kuchko A N 2006 J. Appl. Phys. 99 08C906

    [10]

    Cao Y J, Yun G H, Narisu 2011 Acta Phys. Sin. 60 077502 (in Chinese) [曹永军, 云国宏, 那日苏 2011 物理学报 60 077502]

    [11]

    Yang H, Yun G H, Cao Y J 2011 J. Phys. D: Appl. Phys. 44 455001

    [12]

    Cao Y J, Yun G H, Liang X X, Ban N 2010 J. Phys. D: Appl. Phys. 43 305005

    [13]

    Hu X Y, Huhe M, Cao Y J 2014 Acta Phys. Sin. 63 147501 (in Chinese) [胡晓颖, 呼和满都拉, 曹永军 2014 物理学报 63 147501]

    [14]

    Puszkarski H, Krawczyk M 2003 Solid State Phenom. 94 125

    [15]

    Kruglyak V V, Kuchko A N 2001 Phys. Met. Metallogr. 92 211

    [16]

    Liu J 2014 Chin. Phys. B 23 047503

    [17]

    Kumar D, Klos J W, Krawczyk M, Barman A 2014 J. Appl. Phys. 115 043917

  • [1]

    Krawczyk M, Puszkarski H 2008 Phys. Rev. B 77 054437

    [2]

    Tacchi S, Duerr G, Klos J W, Madami M, Neusser S, Gubbiotti G, Carlotti G, Krawczyk M, Grundler D 2012 Phys. Rev. Lett. 109 137202

    [3]

    Mamica S, Krawczyk M, Klos J W 2012 Adv. Cond. Mat. Phys. 2012 161387

    [4]

    Krawczyk M, Klos J W, Sokolovskyy L, Madami M 2010 J. Appl. Phys. 108 093909

    [5]

    Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S, Adeyeye A O 2009 Appl. Phys. Lett. 94 083112

    [6]

    Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S, Adeyeye A O 2010 ACS Nano 4 643

    [7]

    Krawczyk M, Puszkarski H 2008 Phys. Rev. B 77 054437

    [8]

    Kuchko A N, Sokolovskii M L, Kruglyak V V 2005 Physica B 370 73

    [9]

    Kruglyak V V, Sokolovskii M L, Tkachenko V S, Kuchko A N 2006 J. Appl. Phys. 99 08C906

    [10]

    Cao Y J, Yun G H, Narisu 2011 Acta Phys. Sin. 60 077502 (in Chinese) [曹永军, 云国宏, 那日苏 2011 物理学报 60 077502]

    [11]

    Yang H, Yun G H, Cao Y J 2011 J. Phys. D: Appl. Phys. 44 455001

    [12]

    Cao Y J, Yun G H, Liang X X, Ban N 2010 J. Phys. D: Appl. Phys. 43 305005

    [13]

    Hu X Y, Huhe M, Cao Y J 2014 Acta Phys. Sin. 63 147501 (in Chinese) [胡晓颖, 呼和满都拉, 曹永军 2014 物理学报 63 147501]

    [14]

    Puszkarski H, Krawczyk M 2003 Solid State Phenom. 94 125

    [15]

    Kruglyak V V, Kuchko A N 2001 Phys. Met. Metallogr. 92 211

    [16]

    Liu J 2014 Chin. Phys. B 23 047503

    [17]

    Kumar D, Klos J W, Krawczyk M, Barman A 2014 J. Appl. Phys. 115 043917

  • [1] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [2] 刘艳玲, 刘文静, 包佳美, 曹永军. 二维复式晶格磁振子晶体的带隙结构. 物理学报, 2016, 65(15): 157501. doi: 10.7498/aps.65.157501
    [3] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究. 物理学报, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [4] 胡晓颖, 呼和满都拉, 曹永军. 三角晶格磁振子晶体带结构的优化研究. 物理学报, 2014, 63(14): 147501. doi: 10.7498/aps.63.147501
    [5] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [6] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [7] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [8] 袁桂芳, 韩利红, 俞重远, 刘玉敏, 芦鹏飞. 二维光子晶体禁带特性研究. 物理学报, 2011, 60(10): 104214. doi: 10.7498/aps.60.104214
    [9] 王立勇, 曹永军. 散射体排列方式对二维磁振子晶体带隙结构的影响. 物理学报, 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [10] 曹永军, 云国宏, 那日苏. 平面波展开法计算二维磁振子晶体带结构. 物理学报, 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [11] 杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟. 介质柱型二维Triangular格子光子晶体的禁带特性. 物理学报, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [12] 许振龙, 吴福根. 基元配置对二维光子晶体不同能带之间带隙的调节和优化. 物理学报, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [13] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [14] 刘頔威, 刘盛纲. 二维单斜点阵光子晶体的第一布里渊区及带隙计算. 物理学报, 2007, 56(5): 2747-2750. doi: 10.7498/aps.56.2747
    [15] 刘 欢, 姚建铨, 李恩邦, 温午麒, 张 强, 王 鹏. 三维光子晶体典型结构完全禁带的最佳参数理论分析. 物理学报, 2006, 55(1): 230-237. doi: 10.7498/aps.55.230
    [16] 路志刚, 宫玉彬, 魏彦玉, 王文祥. 二维金属光子晶体的带结构研究. 物理学报, 2006, 55(7): 3590-3596. doi: 10.7498/aps.55.3590
    [17] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [18] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [19] 庄飞, 吴良, 何赛灵. 用线性变换方法计算二维正方晶胞正n边形直柱光子晶体的带隙结构. 物理学报, 2002, 51(12): 2865-2870. doi: 10.7498/aps.51.2865
    [20] 沈林放, 何赛灵, 吴良. 等效介质理论在光子晶体平面波展开分析方法中的应用. 物理学报, 2002, 51(5): 1133-1138. doi: 10.7498/aps.51.1133
计量
  • 文章访问数:  2863
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-08
  • 修回日期:  2015-01-02
  • 刊出日期:  2015-05-05

旋转方形散射体对三角晶格磁振子晶体带结构的优化

  • 1. 集宁师范学院物理系, 集宁 012000
    基金项目: 内蒙古自治区高等学校科学技术研究项目(批准号: NJZY13281)资助的课题.

摘要: 用改进的平面波展开法数值计算了正方形散射体三角排列的二维磁振子晶体当散射体旋转时的带结构. 结果显示, 同样的填充率下, 旋转正方柱散射体可以在新的频率范围内打开更多的带隙, 或者使低频带隙加宽. 说明旋转散射体可以有效地优化带隙.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回