搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯纳米带的齿形表面等离激元滤波器的研究

盛世威 李康 孔繁敏 岳庆炀 庄华伟 赵佳

引用本文:
Citation:

基于石墨烯纳米带的齿形表面等离激元滤波器的研究

盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳

Tooth-shaped plasmonic filter based on graphene nanoribbon

Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia
PDF
导出引用
  • 提出了一种基于石墨烯纳米带的齿形表面等离激元波导滤波器, 并且用时域有限差分法研究了这种结构. 单个齿形的滤波器可以实现带阻滤波, 其滤波特性可以用基于散射矩阵的解析模型解释. 滤波器的透射谱特性可以通过调节齿的长度、宽度以及石墨烯的化学势来改变. 由于石墨烯的化学势可以用门电路来调节, 这种结构的滤波器可以在器件加工完成后灵活地调节其工作波长. 同时研究了多齿滤波器, 这种结构可以实现宽带滤波, 文中对具有不同齿数、周期的滤波器的透射谱进行了细致的研究. 研究结果对实现基于石墨烯的大规模集成光电子器件提供了重要的理论参考.
    A class of single tooth-shaped plasmonic filter based on graphene nanoribbon is proposed in this paper, and the structure is numerically analysed by using finite-difference time-domain method. The tooth-shaped structure of graphene nanoribbon can induce a sharp band-stop effect in the transmission spectrum, and the filtering characteristics can be analysed by the scattering matrix method. The effective refractive index of the plasmonic waveguide mode in the graphene nanoribbon is analysed numerically, and it is found that the effective refractive index is influenced by both the chemical potential and the width of the nanoribbon, and when the width is narrower than 30 nm, the higher order mode disappears and the ribbon becomes a single mode waveguide. According to the scattering matrix method, the central frequencies of the transmission dips can be changed by changing the length and the width of the tooth. Flexible electrical tunability of this kind of filter by tiny change of the chemical potential of the graphene through electrical gating is also validated. In addition, transmission spectrum of multi-teeth shaped plasmonic filter is also studied. This kind of structure can possess the broad band-stop filtering property. The influences of tooth number and tooth period on transmission spectrum are investigated. We find that the transmission value can be reduced down to almost zero by adjusting the number of the teeth, also the tooth period can influence the central frequency of the stop band because of the coupling effects between each other. Like the single-tooth filter based on graphene nanoribbon, the multi-tooth broad band-stop filter can also be flexibly tuned by the geometric parameters of the structure and the chemical potential of the graphene. This work provides an effective method of designing graphene based ultra-compact tunable devices, and has extensive potential for designing all-optical integrated architectures for optical networks, communication and computing devices.
    • 基金项目: 国家自然科学基金(批准号: 61475084)、中国博士后科学基金(批准号: 2012M511506) 和山东大学基础研究基金(批准号: 2014JC032)资助的课题.
    • Funds: Project supported by the National Natural Science Foudation of China (Grant No. 61475084), China Postdoctoral Science Foundation, China (Grant No. 2012M511506), and the Fundamental Research Funds of Shandong University, China (Grant No. 2014JC032).
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [3]

    Lao J, Tao J, Wang Q J, Huang X G 2014 Laser Photon. Rev. 8 569

    [4]

    Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101 (in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 物理学报 64 018101]

    [5]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [6]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203

    [7]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [8]

    Liu Y Q, Zhang Y P, Zhang H Y, L H H, Li T T, Ren G J 2014 Acta Phys. Sin. 63 075201 (in Chinese) [刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军 2014 物理学报 63 075201]

    [9]

    Lu H, Liu X, Mao D, Wang L, Gong Y 2010 Opt. Express 18 17922

    [10]

    Wang B, Wang G P 2006 Appl. Phys. Lett. 89 133106

    [11]

    Wang G, Lu H, Liu X, Mao D, Duan L 2011 Opt. Express 19 3513

    [12]

    Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 J. Opt. Soc. Am. B 27 323

    [13]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [14]

    Arigong B, Shao J, Ren H, Zheng G, Lutkenhaus J, Kim H, Lin Y, Zhang H 2012 Opt. Express 20 13789

    [15]

    He S, Zhang X, He Y 2013 Opt. Express 21 30664

    [16]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens Frank H L, Javier García de Abajo F 2011 ACS Nano 6 431

    [17]

    Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601 (in Chinese) [刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 物理学报 62 063601]

    [18]

    Zhu X, Yan W, Mortensen N A, Xiao S 2013 Opt. Express 21 3486

    [19]

    Gómez-Díaz J, Perruisseau-Carrier J 2013 Opt. Express 21 15490

    [20]

    Li H, Wang L, Huang Z, Sun B, Zhai X, Li X 2013 Europhys. Lett. 104 37001

    [21]

    Wang B, Zhang X, Yuan X, Teng J 2012 Appl. Phys. Lett. 100 131111

    [22]

    Li H J, Wang L L, Liu J Q, Huang Z R, Sun B, Zhai X 2013 Appl. Phys. Lett. 103 211104

    [23]

    Wang J, Lu W B, Li X B, Ni Z H, Qiu T 2014 J. Phys. D: Appl. Phys. 47 135106

    [24]

    Li H J, Wang L L, Zhang H, Huang Z R, Sun B, Zhai X, Wen S C 2014 Appl. Phys. Express 7 024301

    [25]

    Hu J, Lu W, Wang J 2014 Europhys. Lett. 106 48002

    [26]

    Zhang L, Yang J, Fu X, Zhang M 2013 Appl. Phys. Lett. 103 163114

    [27]

    Sheng S W, Li K, Kong F M, Zhuang H W 2015 Opt. Commun. 336 189

    [28]

    Li H J, Wang L L, Huang Z R, Sun B, Zhai X 2014 Plasmonics 9 6

    [29]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [30]

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F 2008 Phys. Rev. Lett. 101 196405

    [31]

    Nikitin A Y, Guinea F, García-Vidal L, Martín-Moreno F J 2011 Phys. Rev. B 84 161407

    [32]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [33]

    Vakil A, Engheta N 2011 Science 332 1291

    [34]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q 2013 Nano Lett. 13 3698

    [35]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

    [36]

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302 (in Chinese) [康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302]

    [37]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [38]

    Lin X S, Huang X G 2009 J. Opt. Soc. Am. B 26 1263

  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [3]

    Lao J, Tao J, Wang Q J, Huang X G 2014 Laser Photon. Rev. 8 569

    [4]

    Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101 (in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 物理学报 64 018101]

    [5]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502]

    [6]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015203

    [7]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [8]

    Liu Y Q, Zhang Y P, Zhang H Y, L H H, Li T T, Ren G J 2014 Acta Phys. Sin. 63 075201 (in Chinese) [刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军 2014 物理学报 63 075201]

    [9]

    Lu H, Liu X, Mao D, Wang L, Gong Y 2010 Opt. Express 18 17922

    [10]

    Wang B, Wang G P 2006 Appl. Phys. Lett. 89 133106

    [11]

    Wang G, Lu H, Liu X, Mao D, Duan L 2011 Opt. Express 19 3513

    [12]

    Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 J. Opt. Soc. Am. B 27 323

    [13]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [14]

    Arigong B, Shao J, Ren H, Zheng G, Lutkenhaus J, Kim H, Lin Y, Zhang H 2012 Opt. Express 20 13789

    [15]

    He S, Zhang X, He Y 2013 Opt. Express 21 30664

    [16]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens Frank H L, Javier García de Abajo F 2011 ACS Nano 6 431

    [17]

    Liu Y, Yao J, Chen C, Miao L, Jiang J J 2013 Acta Phys. Sin. 62 063601 (in Chinese) [刘源, 姚洁, 陈驰, 缪灵, 江建军 2013 物理学报 62 063601]

    [18]

    Zhu X, Yan W, Mortensen N A, Xiao S 2013 Opt. Express 21 3486

    [19]

    Gómez-Díaz J, Perruisseau-Carrier J 2013 Opt. Express 21 15490

    [20]

    Li H, Wang L, Huang Z, Sun B, Zhai X, Li X 2013 Europhys. Lett. 104 37001

    [21]

    Wang B, Zhang X, Yuan X, Teng J 2012 Appl. Phys. Lett. 100 131111

    [22]

    Li H J, Wang L L, Liu J Q, Huang Z R, Sun B, Zhai X 2013 Appl. Phys. Lett. 103 211104

    [23]

    Wang J, Lu W B, Li X B, Ni Z H, Qiu T 2014 J. Phys. D: Appl. Phys. 47 135106

    [24]

    Li H J, Wang L L, Zhang H, Huang Z R, Sun B, Zhai X, Wen S C 2014 Appl. Phys. Express 7 024301

    [25]

    Hu J, Lu W, Wang J 2014 Europhys. Lett. 106 48002

    [26]

    Zhang L, Yang J, Fu X, Zhang M 2013 Appl. Phys. Lett. 103 163114

    [27]

    Sheng S W, Li K, Kong F M, Zhuang H W 2015 Opt. Commun. 336 189

    [28]

    Li H J, Wang L L, Huang Z R, Sun B, Zhai X 2014 Plasmonics 9 6

    [29]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [30]

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F 2008 Phys. Rev. Lett. 101 196405

    [31]

    Nikitin A Y, Guinea F, García-Vidal L, Martín-Moreno F J 2011 Phys. Rev. B 84 161407

    [32]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [33]

    Vakil A, Engheta N 2011 Science 332 1291

    [34]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q 2013 Nano Lett. 13 3698

    [35]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

    [36]

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302 (in Chinese) [康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302]

    [37]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [38]

    Lin X S, Huang X G 2009 J. Opt. Soc. Am. B 26 1263

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [3] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [4] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [5] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [6] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [8] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [9] 李丹, 梁君武, 刘华伟, 张学红, 万强, 张清林, 潘安练. CdS/CdS0.48Se0.52轴向异质结纳米线的非对称光波导及双波长激射. 物理学报, 2017, 66(6): 064204. doi: 10.7498/aps.66.064204
    [10] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [11] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [12] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [13] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质. 物理学报, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [14] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度. 物理学报, 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [15] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [16] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [17] 贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞. 领结形中空表面等离子体波导的传输特性. 物理学报, 2011, 60(5): 057301. doi: 10.7498/aps.60.057301
    [18] 陈凡, 郝军, 李红根, 曹庄琪. 基于古斯-汉欣位移的双通道窄带滤波器. 物理学报, 2011, 60(7): 074223. doi: 10.7498/aps.60.074223
    [19] 郭亚楠, 薛文瑞, 张文梅. 双椭圆纳米金属棒构成的表面等离子体波导的传输特性分析. 物理学报, 2009, 58(6): 4168-4174. doi: 10.7498/aps.58.4168
    [20] 陈建军, 李 智, 张家森, 龚旗煌. 基于电光聚合物的表面等离激元调制器. 物理学报, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
计量
  • 文章访问数:  7311
  • PDF下载量:  914
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-03
  • 修回日期:  2014-12-16
  • 刊出日期:  2015-05-05

/

返回文章
返回