搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔脆性材料对高能量密度脉冲的吸收和抵抗能力

喻寅 贺红亮 王文强 卢铁城

引用本文:
Citation:

多孔脆性材料对高能量密度脉冲的吸收和抵抗能力

喻寅, 贺红亮, 王文强, 卢铁城

The ability of porous brittle materials to absorb and withstand high energy density pulse

Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng
PDF
导出引用
  • 作用在脆性结构材料表面的高能量密度脉冲会以冲击波的形式传播进入材料内部, 导致压缩破坏和功能失效. 通过设计并引入微孔洞, 显著增强了脆性材料冲击下的塑性变形能力, 从而使脆性结构材料可以有效地吸收耗散冲击波能量, 并抑制冲击诱导裂纹的扩展贯通. 建立格点-弹簧模型并用于模拟研究致密和多孔脆性材料在高能量密度脉冲加载下的冲击塑性机理、能量吸收耗散过程和裂纹扩展过程. 冲击波压缩下孔洞塌缩, 导致体积收缩变形和滑移以及转动变形, 使得多孔脆性材料表现出显著的冲击塑性. 对致密样品、气孔率5%和10%的多孔样品吸能能力的计算表明, 多孔脆性材料吸收耗散高能量密度脉冲的能力远优于致密脆性材料. 在短脉冲加载下, 相较于遭受整体破坏的致密脆性材料, 多孔脆性材料以增加局部区域的损伤程度为代价, 阻止了严重的冲击破坏扩展贯通整个样品, 避免了材料的整体功能失效.
    The high energy density pulse input into brittle structural materials will propagate as a shock wave. It induces compression fracture and function failure. In this work, voids are introduced to significantly enhance the shock plastic deformability of brittle structural materials, so that brittle structural materials can effectively absorb the shock wave energy, and restrain the propagation of shock-induced cracks. A lattice-spring model is established to investigate the mechanism of shock plastic, and the processes of energy absorbing and crack expanding in porous brittle materials. The shock wave inside porous brittle material splits into an elastic wave and a deformation wave. The deformation wave is similar to the plastic wave in ductile metal, however, its deformation mechanism is of volume shrinkage induced by voids collapse, and slippage and rotation deformation of scattered tiny scraps comminuted by shear cracks. We calculate the shock wave energy based on particle velocities and longitudinal stresses on nine interfaces of the modeled brittle sample, and further obtain the absorbed energy density. The absorbed energy density curve is composed of two stages: the absorbing stage and the saturation stage. The absorbing stage corresponds to the deformation wave, and the saturation stage corresponds to the shock equilibrium state (Hugoniot state). The energy absorb abilities of the dense sample and porous samples with 5% and 10% porosities are compared based on calculation results. It shows that the ability of the porous brittle material to absorb high energy density pulse is much higher than that of the dense brittle material. The ability of porous brittle materials to restrain the propagation of the shock fracture is also explored. The goal of this design is to freeze the propagation of the shock fracture in the middle of the brittle sample, so that the other parts of the sample keep nearly intact during the shock. Inside the protected area, the designed functions of brittle materials can be accomplished without the disturbance of the shock fracture. This design is used under the short pulse loading condition: the rarefaction wave on the rear of the short pulse will catch up and unload the deformation wave if it moves slowly; the deformation wave and the shock fracture propagate synchronously; when the deformation wave is unloaded, the shock fracture will be frozen in the middle of the porous sample. Under the short pulse loading condition, compared with the dense brittle material, whose entire regions are destructed, the porous brittle material can restrain the propagation and impenetration of the shock fracture, with the cost of increasing the damage extent in part of the sample. This is helpful to avoid the entirely function failure of the brittle structural material.
    • 基金项目: 中国工程物理研究院重点实验室专项科研计划(批准号:2012-专-03)、冲击波物理与爆轰物理重点实验室基金(批准号:9140C670301120C67248,9140C670302140C67284)和国家自然科学基金(批准号:11272164)资助的课题.
    • Funds: Project supported by the Special Scientific Research Program for Key Laboratory of China Academy of Engineering Physics (Grant No. 2012-zhuan-03), the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant Nos. 9140C670301120C67248, 9140C670302140C67284), and the National Natural Science Foundation of China (Grant No. 11272164).
    [1]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 物理学报 63 185202]

    [2]

    Wang F C 2013 Chin. Phys. B 22 124102

    [3]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [4]

    Song Y F, Yu G Y, Jiang L L, Zheng X X, Liu Y Q, Yang Y Q 2011 J. Appl. Phys. 109 073103

    [5]

    Couturier S, de Rességuier T, Hallouin M, Romain J P, Bauer F 1996 J. Appl. Phys. 79 9338

    [6]

    Kawai N, Tsurui K, Hasegawa S, Sato E 2010 Rev. Sci. Instrum. 81 115105

    [7]

    de Rességuier T, Kurakevych O O, Chabot A, Petitet J P, Solozhenko V L 2010 J. Appl. Phys. 108 083522

    [8]

    Lee B T, Sarkar S K 2009 Scr. Mater. 61 686

    [9]

    Chen L Y, Fu Z D, Zhang G Q, Hao X P, Jiang Q K, Wang X D, Cao Q P, Franz H, Liu Y G, Xie H S, Zhang S L, Wang B Y, Zeng Y W, Jiang J Z 2008 Phys. Rev. Lett. 100 075501

    [10]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [11]

    Grady D E 1998 Mech. Mater. 29 181

    [12]

    Bourne N K, Millett J, Rosenberg Z, Murray N 1998 J. Mech. Phys. Solids 46 1887

    [13]

    Lankford J, Predebon W W, Staehler J M, Subhash G, Pletka B J 1998 Mech. Mater. 29 205

    [14]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [15]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [16]

    Abdeljawad F, Fontus M, Haataja M 2011 Appl. Phys. Lett. 98 031909

    [17]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [18]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501

    [19]

    Mirkhalaf M, Dastjerdi A K, Barthelat F 2014 Nat. Commun. 5 3166

    [20]

    Yahyazadehfar M, Bajaj D, Arola D D 2013 Acta Biomater. 9 4806

    [21]

    Barthelat F, Tang H, Zavattieri P D, Li C M, Espinosa H D 2007 J. Mech. Phys. Solids 55 306

    [22]

    Wang R Z, Suo Z, Evans A G, Yao N, Aksay I A 2001 J. Mater. Res. 16 2485

    [23]

    Launey M E, Ritchie R O 2009 Adv. Mater. 21 2103

    [24]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [25]

    Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025

    [26]

    Lian Y P, Zhang X, Liu Y 2012 Theor. Appl. Mech. Lett. 2 021003

    [27]

    Buxton G A, Care C M, Cleaver D J 2001 Modelling Simul. Mater. Sci. Eng. 9 485

    [28]

    Pazdniakou A, Adler P 2012 Transp. Porous. Med. 93 243

    [29]

    Chen Z, Han Y L, Jiang S, Gan Y, Sewell T D 2012 Theor. Appl. Mech. Lett. 2 051003

    [30]

    Ghajari M, Iannucci L, Curtis P 2014 Comput. Methods Appl. Mech. Engrg. 276 431

    [31]

    Huang D, Zhang Q, Qiao P Z 2011 Sci. China Tech. Sci. 54 591

    [32]

    Buxton G A, Balazs A C 2002 J. Chem. Phys. 117 7649

    [33]

    Ashurst W T, Hoover W G 1976 Phys. Rev. B 14 1465

    [34]

    Hrennikoff A 1941 J. Appl. Mech. 8 A169

    [35]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [36]

    Zhao G, Fang J, Zhao J 2011 Int. J. Numer. Anal. Meth. Geomech. 35 859

    [37]

    Ostoja-Starzewski M 2002 Appl. Mech. Rev. 55 35

    [38]

    Wang Y, Yin X C, Ke F J, Xia M F, Peng K Y 2000 Pure Appl. Geophys. 157 1905

    [39]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [40]

    Grah M, Alzebdeh K, Sheng P Y, Vaudin M D, Bowman K J, Ostoja-Starzewski M 1996 Acta Mater. 44 4003

    [41]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [42]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [43]

    Ashby M F, Hallam S D 1986 Acta Metall. 34 497

    [44]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nat. Mater. 5 614

    [45]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102 (in Chinese) [喻寅, 贺红亮, 王文强, 卢铁城 2014 物理学报 63 246102]

    [46]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103 (in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 物理学报 61 048103]

    [47]

    Subhash G, Liu Q, Gao X L 2006 Int. J. Impact. Eng. 32 1113

    [48]

    Li Q M, Reid S R 2006 Int. J. Impact. Eng. 32 1898

    [49]

    Yamada Y, Shimojima K, Sakaguchi Y, Mabuchi M, Nakamura M, Asahina T, Mukai T, Kanahashi H, Higashi K 1999 J. Mater. Sci. Lett. 18 1477

  • [1]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 物理学报 63 185202]

    [2]

    Wang F C 2013 Chin. Phys. B 22 124102

    [3]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [4]

    Song Y F, Yu G Y, Jiang L L, Zheng X X, Liu Y Q, Yang Y Q 2011 J. Appl. Phys. 109 073103

    [5]

    Couturier S, de Rességuier T, Hallouin M, Romain J P, Bauer F 1996 J. Appl. Phys. 79 9338

    [6]

    Kawai N, Tsurui K, Hasegawa S, Sato E 2010 Rev. Sci. Instrum. 81 115105

    [7]

    de Rességuier T, Kurakevych O O, Chabot A, Petitet J P, Solozhenko V L 2010 J. Appl. Phys. 108 083522

    [8]

    Lee B T, Sarkar S K 2009 Scr. Mater. 61 686

    [9]

    Chen L Y, Fu Z D, Zhang G Q, Hao X P, Jiang Q K, Wang X D, Cao Q P, Franz H, Liu Y G, Xie H S, Zhang S L, Wang B Y, Zeng Y W, Jiang J Z 2008 Phys. Rev. Lett. 100 075501

    [10]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [11]

    Grady D E 1998 Mech. Mater. 29 181

    [12]

    Bourne N K, Millett J, Rosenberg Z, Murray N 1998 J. Mech. Phys. Solids 46 1887

    [13]

    Lankford J, Predebon W W, Staehler J M, Subhash G, Pletka B J 1998 Mech. Mater. 29 205

    [14]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [15]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [16]

    Abdeljawad F, Fontus M, Haataja M 2011 Appl. Phys. Lett. 98 031909

    [17]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [18]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501

    [19]

    Mirkhalaf M, Dastjerdi A K, Barthelat F 2014 Nat. Commun. 5 3166

    [20]

    Yahyazadehfar M, Bajaj D, Arola D D 2013 Acta Biomater. 9 4806

    [21]

    Barthelat F, Tang H, Zavattieri P D, Li C M, Espinosa H D 2007 J. Mech. Phys. Solids 55 306

    [22]

    Wang R Z, Suo Z, Evans A G, Yao N, Aksay I A 2001 J. Mater. Res. 16 2485

    [23]

    Launey M E, Ritchie R O 2009 Adv. Mater. 21 2103

    [24]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [25]

    Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025

    [26]

    Lian Y P, Zhang X, Liu Y 2012 Theor. Appl. Mech. Lett. 2 021003

    [27]

    Buxton G A, Care C M, Cleaver D J 2001 Modelling Simul. Mater. Sci. Eng. 9 485

    [28]

    Pazdniakou A, Adler P 2012 Transp. Porous. Med. 93 243

    [29]

    Chen Z, Han Y L, Jiang S, Gan Y, Sewell T D 2012 Theor. Appl. Mech. Lett. 2 051003

    [30]

    Ghajari M, Iannucci L, Curtis P 2014 Comput. Methods Appl. Mech. Engrg. 276 431

    [31]

    Huang D, Zhang Q, Qiao P Z 2011 Sci. China Tech. Sci. 54 591

    [32]

    Buxton G A, Balazs A C 2002 J. Chem. Phys. 117 7649

    [33]

    Ashurst W T, Hoover W G 1976 Phys. Rev. B 14 1465

    [34]

    Hrennikoff A 1941 J. Appl. Mech. 8 A169

    [35]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [36]

    Zhao G, Fang J, Zhao J 2011 Int. J. Numer. Anal. Meth. Geomech. 35 859

    [37]

    Ostoja-Starzewski M 2002 Appl. Mech. Rev. 55 35

    [38]

    Wang Y, Yin X C, Ke F J, Xia M F, Peng K Y 2000 Pure Appl. Geophys. 157 1905

    [39]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [40]

    Grah M, Alzebdeh K, Sheng P Y, Vaudin M D, Bowman K J, Ostoja-Starzewski M 1996 Acta Mater. 44 4003

    [41]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [42]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [43]

    Ashby M F, Hallam S D 1986 Acta Metall. 34 497

    [44]

    Chen M W, McCauley J W, Dandekar D P, Bourne N K 2006 Nat. Mater. 5 614

    [45]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102 (in Chinese) [喻寅, 贺红亮, 王文强, 卢铁城 2014 物理学报 63 246102]

    [46]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103 (in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 物理学报 61 048103]

    [47]

    Subhash G, Liu Q, Gao X L 2006 Int. J. Impact. Eng. 32 1113

    [48]

    Li Q M, Reid S R 2006 Int. J. Impact. Eng. 32 1898

    [49]

    Yamada Y, Shimojima K, Sakaguchi Y, Mabuchi M, Nakamura M, Asahina T, Mukai T, Kanahashi H, Higashi K 1999 J. Mater. Sci. Lett. 18 1477

  • [1] 侯玉梅, 陈伟, 邹云鹏, 于利明, 石中兵, 段旭如. HL-2A装置高能量离子驱动的比压阿尔芬本征模的扫频行为. 物理学报, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [2] 邹云鹏, 陈锡熊, 陈伟. 临界梯度模型的优化及集成模拟中高能量粒子模块的搭建. 物理学报, 2023, 72(21): 215206. doi: 10.7498/aps.72.20230681
    [3] 包健, 张文禄, 李定. 高能量电子激发比压阿尔芬本征模的全域模拟研究. 物理学报, 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [4] 磁约束等离子体中的高能量粒子专题编者按. 物理学报, 2023, 72(21): 210101. doi: 10.7498/aps.72.210101
    [5] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用. 物理学报, 2022, 71(1): 015201. doi: 10.7498/aps.71.20211430
    [6] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211430
    [7] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束. 物理学报, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [8] 谢辰, 胡明列, 张大鹏, 柴路, 王清月. 基于多通单元的高能量耗散孤子锁模光纤振荡器. 物理学报, 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [9] 刘成, 王兆华, 沈忠伟, 张伟, 滕浩, 魏志义. 高能量环形长腔再生放大啁啾脉冲激光的研究. 物理学报, 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [10] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [11] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [12] 王擂然, 刘雪明, 宫永康. 基于高能量耗散型脉冲掺铒光纤激光器的实验研究. 物理学报, 2010, 59(9): 6200-6204. doi: 10.7498/aps.59.6200
    [13] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器. 物理学报, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [14] 雷 霆, 涂成厚, 李恩邦, 李勇男, 郭文刚, 魏 岱, 朱 辉, 吕福云. 高能量无波分裂超短脉冲自相似传输的理论研究和数值模拟. 物理学报, 2007, 56(5): 2769-2775. doi: 10.7498/aps.56.2769
    [15] 邵 涛, 孙广生, 严 萍, 谷 琛, 张适昌. 纳秒脉冲下高能量快电子逃逸过程的计算. 物理学报, 2006, 55(11): 5964-5968. doi: 10.7498/aps.55.5964
    [16] 刘元富, 韩建民, 张谷令, 王久丽, 陈光良, 李雪明, 冯文然, 范松华, 刘赤子, 杨思泽. 脉冲高能量密度等离子体沉积(Ti, Al)N薄膜组织及其性能研究. 物理学报, 2005, 54(3): 1301-1305. doi: 10.7498/aps.54.1301
    [17] 刘元富, 张谷令, 王久丽, 刘赤子, 杨思泽. 脉冲高能量密度等离子体法制备TiN薄膜及其摩擦磨损性能研究. 物理学报, 2004, 53(2): 503-507. doi: 10.7498/aps.53.503
    [18] 杨武保, 范松华, 刘赤子, 张谷令, 王久丽, 杨思泽. 脉冲高能量密度等离子体法类金刚石膜的制备及分析. 物理学报, 2003, 52(1): 140-144. doi: 10.7498/aps.52.140
    [19] 刘政威, 阳效良, 肖思国. 提高能量上转换效率的实验探讨. 物理学报, 2001, 50(9): 1795-1779. doi: 10.7498/aps.50.1795
    [20] 韩福生, 朱震刚, 刘长松. 泡沫Al压缩形变及能量吸收特征. 物理学报, 1998, 47(3): 520-528. doi: 10.7498/aps.47.520
计量
  • 文章访问数:  5239
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-30
  • 修回日期:  2014-12-16
  • 刊出日期:  2015-06-05

/

返回文章
返回