搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Xe54+离子与Xe原子碰撞过程中的辐射电子俘获及退激发辐射的理论研究

梁腾 马堃 陈曦 颉录有 董晨钟 邵曹杰 于得洋 蔡晓红

引用本文:
Citation:

Xe54+离子与Xe原子碰撞过程中的辐射电子俘获及退激发辐射的理论研究

梁腾, 马堃, 陈曦, 颉录有, 董晨钟, 邵曹杰, 于得洋, 蔡晓红

Theoretical study on radiative electron capture and subsequent radiative decay in collision of Xe54+ with Xe

Liang Teng, Ma Kun, Chen Xi, Xie Lu-You, Dong Chen-Zhong, Shao Cao-Jie, Yu De-Yang, Cai Xiao-Hong
PDF
导出引用
  • 基于多组态Dirac-Fock理论方法和冲量近似, 对Xe54+与Xe在197 MeV/u碰撞能量下, 炮弹离子的俘获及退激发过程进行了理论研究. 计算了炮弹离子从中性靶原子俘获一个电子到nl (n=1, 2, 3, 4, 5; l=s, p, d) 轨道上的辐射电子俘获截面和相应的辐射光子能量, 以及俘获末态退激发辐射跃迁的能量和概率. 结合这些计算结果, 进一步模拟了碰撞产生的炮弹离子的退激发X射线谱的结构, 并与兰州重离子加速器装置上的最新实验观测结果进行了比较, 符合得很好.
    Based on the multiconfiguration Dirac-Fock method and impulse approximation, the electron capture and following radiation decay of the projectile ion are studied theoretically for Xe atom which is bombarded by Xe54+ ion at 197 MeV/u. The radiative electron capture (REC) cross-sections and the corresponding emitted photon energies have been calculated in detail. Meanwhile, the probabilities of the radiative decay and energies of the REC final states are also calculated; combined with the calculated results in this paper, the X-ray spectra structure of radiative decay from projectile ion is further simulated. It is found that the simulated spectra are in good agreement with the newly measured results at Lanzhou Heavy-Ion Accelerator Device.
    • 基金项目: 国家自然科学基金(批准号: 11274254, U1332206, U1331122)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274254, U1332206, U1331122).
    [1]

    Kozio K 2014 J. Quant. Spectrosc. Radiat. 149 138

    [2]

    Eichler J 1990 Phys. Rep. 193 165

    [3]

    Vane C R, Datz S, Dittner P F, Giese J, Jones N L, Krause H F, Rosseel T M, Peterson R S 1994 Phys. Rev. A 49 1847

    [4]

    Raisbeck G, Yiou F 1971 Phys. Rev. A 4 1858

    [5]

    Schnopper H W, Betz Hans D, Delvaille J P, Kalata K, Sohval A R, Jones K W, Wegner H E 1972 Phys. Rev. Lett. 29 898

    [6]

    Surzhykov A, Jentschura U D, Stöhlker T, Fritzsche S 2006 Phys. Rev. A 73 032716

    [7]

    Fritzsche S, Surzhykov A, Stöhlker T 2005 Phys. Rev. A 72 012704

    [8]

    Ma X, Stöhlker T, Bosch F, Brinzanescu O, Fritzsche S, Kozhuharov C, Ludziejewski T, Mokler P H, Stachura Z, Warczak A 2001 Phys. Rev. A 64 012704

    [9]

    Eichler J, Stöhlker T 2007 Phys. Rep. 439 1

    [10]

    Anholt R, Andriamonje S A, Morenzoni E, Stoller C, Monlitoris J D, Meyerhof W E, Bowman H, Xu J S, Xu Z Z, Rasmussen J O, Hoffmann D H H 1984 Phys. Rev. Lett. 53 234

    [11]

    Stöhlker T, Kozhuharov C, Mokler P H, Warczak A, Bosch F, Geissel H, Moshammer R, Scheidenberger C, Eichler J, Ichihara A, Shirai T, Stachura Z, Rymuza P 1995 Phys. Rev. A 51 2098

    [12]

    Rzadkiewicz J, Stöhlker T, Bana D, Beyer H F, Bosch F, Brandau C, Dong C Z, Fritzsche S, Gojska A, Gumberidze A, Hagmann S, Ionescu D C, Kozhuharov C, Nandi T, Reuschl R, Sierpowski D, Spillmann U, Surzhykov A, Tashenov S, Trassinelli M, Trotsenko S 2006 Phys. Rev. A 74 012511

    [13]

    Wan J J, Dong C Z, Ding X B, Ma X W, Rzadkiewicz J, Stöhlker T, Fritzsche S 2009 Phys. Rev. A 79 022707

    [14]

    Yu D Y, Xue Y L, Shao C J, Song Z Y, Lu R C, Ruan F F, Wang W, Chen J, Yang B, Yang Z H, Wan J J, Dong C Z, Cai X H 2011 Nucl. Instr. Meth. B 269 692

    [15]

    Fritzsche S 2002 Phys. Scripta T110 37

    [16]

    Brandt D 1983 Phys. Rev. A 27 1314

    [17]

    Dong C Z, Fu Y B 2006 Acta Phys. Sin. 55 108 (in Chinese) [董晨钟, 符彦飙 2006 物理学 报 55 108]

    [18]

    Ichihara A, Shirai T, Eichler J 1994 Phys. Rev. A 49 1875

    [19]

    Lee J S 1977 J. Chem. Phys. 66 4906

    [20]

    Koga T, Mastsuyama H 1992 Phys. Rev. A 45 5266

    [21]

    Ma X W, Stöhlker T, Beyer H F, Bosch F, Brinzanescu O, Kozhuharov C, Mokler P H, Ludziejewski T, Stachura Z, Warczak A 2002 Nucl. Phys. Rev. 19 131

    [22]

    Sang C C, Wan J J, Dong C Z, Ding X B, Jiang J 2008 Acta Phys. Sin. 57 2152 (in Chinese) [桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋军 2008 物理学报 57 2152]

    [23]

    Grant I P 1974 J. Phys. B 7 1458

    [24]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P1989 Comp. Phys. Commun. 55 425

    [25]

    Jönsson P, He X, Fischer C F 2007 Comput. Phys. Commun. 177 597

    [26]

    Biggs F, Mendelsohn L B, Mann J B 1975 At. Data And Nucl. Data Tables 16 201

    [27]

    Tolstikhina I Y, Shevelko V P 2013 Phys. Usp. 56(3) 213

    [28]

    Wang Y J, Wan J J, Ding X B, Dong C Z, Ma X W, Wang J G, Wu Y 2009 Acta Phys. Sin. 58 2358 (in Chinese) [王永军, 万建杰, 丁晓彬, 董晨钟, 马新文, 王建国, 吴勇 2009 物理学报 58 2358]

  • [1]

    Kozio K 2014 J. Quant. Spectrosc. Radiat. 149 138

    [2]

    Eichler J 1990 Phys. Rep. 193 165

    [3]

    Vane C R, Datz S, Dittner P F, Giese J, Jones N L, Krause H F, Rosseel T M, Peterson R S 1994 Phys. Rev. A 49 1847

    [4]

    Raisbeck G, Yiou F 1971 Phys. Rev. A 4 1858

    [5]

    Schnopper H W, Betz Hans D, Delvaille J P, Kalata K, Sohval A R, Jones K W, Wegner H E 1972 Phys. Rev. Lett. 29 898

    [6]

    Surzhykov A, Jentschura U D, Stöhlker T, Fritzsche S 2006 Phys. Rev. A 73 032716

    [7]

    Fritzsche S, Surzhykov A, Stöhlker T 2005 Phys. Rev. A 72 012704

    [8]

    Ma X, Stöhlker T, Bosch F, Brinzanescu O, Fritzsche S, Kozhuharov C, Ludziejewski T, Mokler P H, Stachura Z, Warczak A 2001 Phys. Rev. A 64 012704

    [9]

    Eichler J, Stöhlker T 2007 Phys. Rep. 439 1

    [10]

    Anholt R, Andriamonje S A, Morenzoni E, Stoller C, Monlitoris J D, Meyerhof W E, Bowman H, Xu J S, Xu Z Z, Rasmussen J O, Hoffmann D H H 1984 Phys. Rev. Lett. 53 234

    [11]

    Stöhlker T, Kozhuharov C, Mokler P H, Warczak A, Bosch F, Geissel H, Moshammer R, Scheidenberger C, Eichler J, Ichihara A, Shirai T, Stachura Z, Rymuza P 1995 Phys. Rev. A 51 2098

    [12]

    Rzadkiewicz J, Stöhlker T, Bana D, Beyer H F, Bosch F, Brandau C, Dong C Z, Fritzsche S, Gojska A, Gumberidze A, Hagmann S, Ionescu D C, Kozhuharov C, Nandi T, Reuschl R, Sierpowski D, Spillmann U, Surzhykov A, Tashenov S, Trassinelli M, Trotsenko S 2006 Phys. Rev. A 74 012511

    [13]

    Wan J J, Dong C Z, Ding X B, Ma X W, Rzadkiewicz J, Stöhlker T, Fritzsche S 2009 Phys. Rev. A 79 022707

    [14]

    Yu D Y, Xue Y L, Shao C J, Song Z Y, Lu R C, Ruan F F, Wang W, Chen J, Yang B, Yang Z H, Wan J J, Dong C Z, Cai X H 2011 Nucl. Instr. Meth. B 269 692

    [15]

    Fritzsche S 2002 Phys. Scripta T110 37

    [16]

    Brandt D 1983 Phys. Rev. A 27 1314

    [17]

    Dong C Z, Fu Y B 2006 Acta Phys. Sin. 55 108 (in Chinese) [董晨钟, 符彦飙 2006 物理学 报 55 108]

    [18]

    Ichihara A, Shirai T, Eichler J 1994 Phys. Rev. A 49 1875

    [19]

    Lee J S 1977 J. Chem. Phys. 66 4906

    [20]

    Koga T, Mastsuyama H 1992 Phys. Rev. A 45 5266

    [21]

    Ma X W, Stöhlker T, Beyer H F, Bosch F, Brinzanescu O, Kozhuharov C, Mokler P H, Ludziejewski T, Stachura Z, Warczak A 2002 Nucl. Phys. Rev. 19 131

    [22]

    Sang C C, Wan J J, Dong C Z, Ding X B, Jiang J 2008 Acta Phys. Sin. 57 2152 (in Chinese) [桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋军 2008 物理学报 57 2152]

    [23]

    Grant I P 1974 J. Phys. B 7 1458

    [24]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P1989 Comp. Phys. Commun. 55 425

    [25]

    Jönsson P, He X, Fischer C F 2007 Comput. Phys. Commun. 177 597

    [26]

    Biggs F, Mendelsohn L B, Mann J B 1975 At. Data And Nucl. Data Tables 16 201

    [27]

    Tolstikhina I Y, Shevelko V P 2013 Phys. Usp. 56(3) 213

    [28]

    Wang Y J, Wan J J, Ding X B, Dong C Z, Ma X W, Wang J G, Wu Y 2009 Acta Phys. Sin. 58 2358 (in Chinese) [王永军, 万建杰, 丁晓彬, 董晨钟, 马新文, 王建国, 吴勇 2009 物理学报 58 2358]

  • [1] 杨欢, 张穗萌, 邢玲玲, 吴兴举, 赵敏福. 电子垂直入射电离氦原子碰撞机理的理论研究. 物理学报, 2017, 66(7): 073401. doi: 10.7498/aps.66.073401
    [2] 梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙. Xe53+离子与Xe原子碰撞过程中的辐射电子俘获和辐射退激发光谱的理论研究. 物理学报, 2016, 65(14): 143401. doi: 10.7498/aps.65.143401
    [3] 焦飞, 蒋军, 颉录有, 张登红, 董晨钟, 陈展斌. Cd+离子5s2S1/2→5p2P3/2电子碰撞激发截面和退激辐射光子极化度的理论研究. 物理学报, 2015, 64(23): 233401. doi: 10.7498/aps.64.233401
    [4] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高能电子碰撞电离对高空核爆炸辐射电离的影响. 物理学报, 2012, 61(21): 212802. doi: 10.7498/aps.61.212802
    [5] 桑萃萃, 王永军, 万建杰, 丁晓彬, 董晨钟. 高离化态金离子的辐射复合及其退激发过程的理论研究. 物理学报, 2010, 59(6): 3871-3877. doi: 10.7498/aps.59.3871
    [6] 王永军, 丁晓彬, 董晨钟, 马新文, 万建杰, 王建国, 吴勇. 类氢U91+离子的辐射复合及其辐射退激发过程的理论研究. 物理学报, 2009, 58(4): 2358-2363. doi: 10.7498/aps.58.2358
    [7] 毛邦宁, 潘佰良, 陈 钢, 夏婷婷. 碱土金属原子激光的共振辐射俘获效应. 物理学报, 2006, 55(4): 1793-1797. doi: 10.7498/aps.55.1793
    [8] 田明锋, 孟续军, 朱希睿, 姜旻昊, 王志刚. 含温有界原子模型下电子与离子碰撞激发和电离截面的理论研究. 物理学报, 2005, 54(10): 4673-4679. doi: 10.7498/aps.54.4673
    [9] 杨 威, 蔡晓红, 于得洋. 紧耦合方法研究离子原子碰撞的单俘获过程. 物理学报, 2005, 54(5): 2128-2132. doi: 10.7498/aps.54.2128
    [10] 王利光, 王 军. O5+离子与H原子碰撞时电子俘获概率的计算. 物理学报, 2003, 52(2): 312-315. doi: 10.7498/aps.52.312
    [11] 马淑红, 张现周, 梁颜天, 孙金锋. H+,He2+与Li原子碰撞中电子俘获总截面的程函近似计算. 物理学报, 2000, 49(6): 1052-1057. doi: 10.7498/aps.49.1052
    [12] 王 谨, 胡正发, 张登玉, 詹明生. Rb原子激发态碰撞能量转移. 物理学报, 1998, 47(8): 1265-1271. doi: 10.7498/aps.47.1265
    [13] 方达渭, 谢卫军, 张森. 环境辐射对原子高激发能级Stark态寿命的影响. 物理学报, 1997, 46(10): 1888-1893. doi: 10.7498/aps.46.1888
    [14] 舒晓武, 张森, 谢卫军, 方达渭. 原子两步激发禁戒态寿命及环境辐射的影响. 物理学报, 1996, 45(8): 1275-1279. doi: 10.7498/aps.45.1275
    [15] 沈异凡, 李万兴. 激发态钠原子间的碰撞能量合并. 物理学报, 1996, 45(1): 29-36. doi: 10.7498/aps.45.29
    [16] 沈异凡, 李万兴. 激发态铯原子间的碰撞能量转移. 物理学报, 1993, 42(11): 1766-1773. doi: 10.7498/aps.42.1766
    [17] 潘广炎, 雷子明, 杨锋, 卢小林, 刘参文, 刘家瑞, 孙湘. Ar+离子与原子碰撞中真空紫外辐射. 物理学报, 1991, 40(6): 891-896. doi: 10.7498/aps.40.891
    [18] 雷子明, 杨锋, 于德洪, 刘家瑞, 潘广炎, 孙湘. Ar2+与Li,Na原子碰撞中单电子俘获过程的实验研究. 物理学报, 1989, 38(9): 1515-1520. doi: 10.7498/aps.38.1515
    [19] 于德洪, 杨锋, 雷子明, 潘广炎, 刘家瑞. 电子与原子He,Ar碰撞过程中激发态的实验研究. 物理学报, 1988, 37(12): 1965-1971. doi: 10.7498/aps.37.1965
    [20] 张历宁, 戴元本. 原子核中μ介子的辐射俘获. 物理学报, 1961, 17(1): 41-44. doi: 10.7498/aps.17.41
计量
  • 文章访问数:  2514
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-22
  • 修回日期:  2015-03-24
  • 刊出日期:  2015-08-05

Xe54+离子与Xe原子碰撞过程中的辐射电子俘获及退激发辐射的理论研究

  • 1. 甘肃省原子分子物理与功能材料重点实验室, 西北师范大学物理与电子工程学院, 兰州 730070;
  • 2. 中国科学院近代物理研究所, 兰州 730000
    基金项目: 国家自然科学基金(批准号: 11274254, U1332206, U1331122)资助的课题.

摘要: 基于多组态Dirac-Fock理论方法和冲量近似, 对Xe54+与Xe在197 MeV/u碰撞能量下, 炮弹离子的俘获及退激发过程进行了理论研究. 计算了炮弹离子从中性靶原子俘获一个电子到nl (n=1, 2, 3, 4, 5; l=s, p, d) 轨道上的辐射电子俘获截面和相应的辐射光子能量, 以及俘获末态退激发辐射跃迁的能量和概率. 结合这些计算结果, 进一步模拟了碰撞产生的炮弹离子的退激发X射线谱的结构, 并与兰州重离子加速器装置上的最新实验观测结果进行了比较, 符合得很好.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回