搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光驱动磁重联过程中的喷流演化和电子能谱测量

张凯 仲佳勇 裴晓星 李玉同 阪和洋一 魏会冈 袁大伟 李芳 韩波 王琛 贺昊 尹传磊 廖国前 方远 杨骕 远晓辉 梁贵云 王菲鹿 朱健强 丁永坤 张杰 赵刚

引用本文:
Citation:

激光驱动磁重联过程中的喷流演化和电子能谱测量

张凯, 仲佳勇, 裴晓星, 李玉同, 阪和洋一, 魏会冈, 袁大伟, 李芳, 韩波, 王琛, 贺昊, 尹传磊, 廖国前, 方远, 杨骕, 远晓辉, 梁贵云, 王菲鹿, 朱健强, 丁永坤, 张杰, 赵刚

Measurement of jet evolution and electron energy spectrum during the process of laser-driven magnetic reconnection

Zhang Kai, Zhong Jia-Yong, Pei Xiao-Xing, Li Yu-Tong, Sakawa Youichi, Wei Hui-Gang, Yuan Da-Wei, Li Fang, Han Bo, Wang Chen, He Hao, Yin Chuan-Lei, Liao Guo-Qian, Fang Yuan, Yang Su, Yuan Xiao-Hui, Liang Gui-Yun, Wang Fei-Lu, Zhu Jian-Qiang, Ding Yong-Kun, Zhang Jie, Zhao Gang
PDF
导出引用
  • 利用神光Ⅱ激光器和日本大阪大学Gekko激光器构建了激光驱动等离子体磁重联过程. 在垂直于磁重联平面方向发现了高速喷流, 从不同观测方向实验证实了该喷流的存在并测量了喷流的流体力学演化过程, 对其中的电子能谱进行了诊断分析.
    Magnetic reconnection (MR) is a universal physical process in plasma, in which the stored magnetic energy is converted into high-velocity flows and energetic particles. It is believed that MR plays an important role in many plasma phenomena such as solar fare, gamma-ray burst, fusion plasma instabilities, etc.. The process of MR has been studied in detail by dedicated magnetic-driven experiments. Here, we report the measurements of magnetic reconnection driven by Shenguang II lasers and Gekko XVII lasers. A collimated plasma jet is observed along the direction perpendicular to the reconnection plane with the optical probing. The present jet is very different from traditional magnetic reconnection outflows as known in the two-dimensional reconnection plane. In our experiment, by changing the delay of optical probing beam, we measure the temporal evolution of jet from 0.5 ns to 2.5 ns and its velocity around 400 km/s is deduced. Highcollimated jet is also confirmed by its strong X-ray radiation recorded by an X-ray pinhole camera. With the help of optical interferograms we calculate the jet configuration and its density distribution by using Abel inverting technique. A magnetic spectrometer with an energy range from hundred eV up to one MeV is installed in front of the jet, in the direction perpendicular to the reconnection plane, to measure the accelerated electrons. Two cases are considered for checking the acceleration of electrons. The results show that more accelerated electrons can be found in the reconnection case than in the case without reconnection. We propose that the formation and collimation of the plasma jet, and the electron energy spectrum may be possible directly influenced by the reconnection electric field, which is very important for understanding the energy conversion in the process of MR and establishment of the theoretical model. Finally the electron energy spectra of three different materials Al, Ta and Au are also shown in our work. The results indicate that the higher atomic number material can obtain a better signal-noise ratio, which provides some helpful references for our future work.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CBA01503)、国家自然科学基金(批准号: 11205015, 11273033, 11135012)和北京科技新星(批准号: Z131109000413050)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01503), the National Natural Science Foundation of China (Grant Nos. 11205015, 11273033, 11135012), and the Beijing Nova Program, China (Grant No. Z131109000413050).
    [1]

    Yamada M, Kulsrud R, Ji H T 2010 Rev. Mod. Phys. 82 603

    [2]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [3]

    Yamada M 2007 Phys. Plasmas 14 058102

    [4]

    Parker E N 1957 J. Geophys. Res. 62 509

    [5]

    Sitnov M I, Sharma A S, Papadopoulos K, Vassiliadis D 2001 Phys. Rev. E 65 016116

    [6]

    Nishizuka N, Hayashi Y, Tanabe H, Kuwahata A, Kaminou Y, Ono Y, Inomoto M, Shimizu T 2012 Astrophys. J. 756 152

    [7]

    Jing J, Yurchyshyn Vasyl B, Yang G, Xu Y, Wang H M 2004 Astrophys. J. 614 1054

    [8]

    Lin R P, Krucker S, Hurford G J, Smith D M, Hudson H S, Holman G D, Schwartz R A, Dennis B R, Share G H, Murphy R J, Emslie A G, Johns-Krull C, Vilmer N 2003 Astrophys. J. 595 L69

    [9]

    Yamada M, Yoo J, Jara-Almonte J, Ji H T, Kulsrud R M, Myers C E 2014 Nat. Comm. 5 4774

    [10]

    Xia J F, Zhang J 2001 Physics 30 210 (in Chinese) [夏江帆, 张杰 2001 物理 30 210]

    [11]

    Begelman M C, Blandford R D, Rees M J 1984 Rev. Mod. Phys. 56 255

    [12]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [13]

    Xia J F, Zhang J 2001 Physics 30 545 (in Chinese) [夏江帆, 张杰 2001 物理 30 545]

    [14]

    Haines M G 1986 Can. J. Phys. 64 912

    [15]

    Stamper J A, Papadopoulos K, Sudan R N, Dean S O, McLean E A, Dawson M J 1971 Phys. Rev. Lett. 26 1012

    [16]

    Haines M G 1997 Phys. Rev. Lett. 78 254

    [17]

    Li C K, Se'guin F H, Frenje J A, Rygg J R, Petrasso R D 2006 Phys. Rev. Lett. 97 135003

    [18]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W, Evans R G, Haines M G, Dangor A E, Krushelnick K 2008 Phys. Plasmas 15 092701

    [19]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W, Evans R G, Haines M G, Dangor A E, Krushelnick K 2006 Phys. Rev. Lett. 97 255001

    [20]

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 63 145201 (in Chinese) [裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚 2014 物理学报 63 145201]

    [21]

    Hipp M, Woisetschlager J, Reiterer P, Neger T 2004 Measurement 36 53

    [22]

    Cai D F, Gu Y Q, Zheng Z J, Zhou W M, Jiao C Y, Wen T S, Chunyu S T 2007 Acta Phys. Sin. 56 346 (in Chinese) [蔡达峰, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰 2007 物理学报 56 346]

    [23]

    Cai D F, Gu Y Q, Zheng Z J, Yang X D, Wen T S, Chunyu S T 2003 High Power Laser and Particle Beams 15 575 (in Chinese) [蔡达峰, 谷渝秋, 郑志坚, 杨向东, 温天舒, 淳于书泰 2003 强激光与粒子束 15 575]

  • [1]

    Yamada M, Kulsrud R, Ji H T 2010 Rev. Mod. Phys. 82 603

    [2]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [3]

    Yamada M 2007 Phys. Plasmas 14 058102

    [4]

    Parker E N 1957 J. Geophys. Res. 62 509

    [5]

    Sitnov M I, Sharma A S, Papadopoulos K, Vassiliadis D 2001 Phys. Rev. E 65 016116

    [6]

    Nishizuka N, Hayashi Y, Tanabe H, Kuwahata A, Kaminou Y, Ono Y, Inomoto M, Shimizu T 2012 Astrophys. J. 756 152

    [7]

    Jing J, Yurchyshyn Vasyl B, Yang G, Xu Y, Wang H M 2004 Astrophys. J. 614 1054

    [8]

    Lin R P, Krucker S, Hurford G J, Smith D M, Hudson H S, Holman G D, Schwartz R A, Dennis B R, Share G H, Murphy R J, Emslie A G, Johns-Krull C, Vilmer N 2003 Astrophys. J. 595 L69

    [9]

    Yamada M, Yoo J, Jara-Almonte J, Ji H T, Kulsrud R M, Myers C E 2014 Nat. Comm. 5 4774

    [10]

    Xia J F, Zhang J 2001 Physics 30 210 (in Chinese) [夏江帆, 张杰 2001 物理 30 210]

    [11]

    Begelman M C, Blandford R D, Rees M J 1984 Rev. Mod. Phys. 56 255

    [12]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [13]

    Xia J F, Zhang J 2001 Physics 30 545 (in Chinese) [夏江帆, 张杰 2001 物理 30 545]

    [14]

    Haines M G 1986 Can. J. Phys. 64 912

    [15]

    Stamper J A, Papadopoulos K, Sudan R N, Dean S O, McLean E A, Dawson M J 1971 Phys. Rev. Lett. 26 1012

    [16]

    Haines M G 1997 Phys. Rev. Lett. 78 254

    [17]

    Li C K, Se'guin F H, Frenje J A, Rygg J R, Petrasso R D 2006 Phys. Rev. Lett. 97 135003

    [18]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W, Evans R G, Haines M G, Dangor A E, Krushelnick K 2008 Phys. Plasmas 15 092701

    [19]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W, Evans R G, Haines M G, Dangor A E, Krushelnick K 2006 Phys. Rev. Lett. 97 255001

    [20]

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 63 145201 (in Chinese) [裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚 2014 物理学报 63 145201]

    [21]

    Hipp M, Woisetschlager J, Reiterer P, Neger T 2004 Measurement 36 53

    [22]

    Cai D F, Gu Y Q, Zheng Z J, Zhou W M, Jiao C Y, Wen T S, Chunyu S T 2007 Acta Phys. Sin. 56 346 (in Chinese) [蔡达峰, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰 2007 物理学报 56 346]

    [23]

    Cai D F, Gu Y Q, Zheng Z J, Yang X D, Wen T S, Chunyu S T 2003 High Power Laser and Particle Beams 15 575 (in Chinese) [蔡达峰, 谷渝秋, 郑志坚, 杨向东, 温天舒, 淳于书泰 2003 强激光与粒子束 15 575]

  • [1] 赵娜, 欧阳建明, 邹德滨, 张国博, 甘龙飞, 邵福球. 基于锥形等离子体通道的百拍瓦激光脉冲整形及重离子加速. 物理学报, 2024, 73(16): 165202. doi: 10.7498/aps.73.20240696
    [2] 于家成, 仲佳勇, 安维明, 平永利. 短脉冲强激光驱动磁重联过程的靶后电势分布特征. 物理学报, 2021, 70(6): 065201. doi: 10.7498/aps.70.20201339
    [3] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [4] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束. 物理学报, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [5] 谭放, 张晓辉, 朱斌, 李纲, 吴玉迟, 于明海, 杨月, 闫永宏, 杨靖, 范伟, 董克攻, 卢峰, 谷渝秋. 基于混合注入机制的级联尾场电子加速. 物理学报, 2019, 68(17): 175201. doi: 10.7498/aps.68.20190484
    [6] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [7] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束. 物理学报, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [8] 张枫, 黄硕, 李晓锋, 余芹, 顾彦珺, 孔青. 双束平行入射电子束引导的自注入电子加速效果的研究. 物理学报, 2013, 62(24): 242901. doi: 10.7498/aps.62.242901
    [9] 穆洁, 盛政明, 郑君, 张杰. 强激光与细锥靶相互作用产生强流高能电子束的研究. 物理学报, 2013, 62(13): 135202. doi: 10.7498/aps.62.135202
    [10] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究. 物理学报, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [11] 王广辉, 王晓方, 董克攻. 超短超强激光导引及对电子加速的影响. 物理学报, 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [12] 夏志林. 激光作用下纳米限域介质材料中的电子加速过程. 物理学报, 2011, 60(5): 056804. doi: 10.7498/aps.60.056804
    [13] 阚鹏志, 赵谡玲, 徐征, 孔超, 王大伟, 闫悦. ZnO纳米棒在聚[2-甲氧基-5-(2-乙基-己氧基)-1,4-苯撑乙烯撑]固态阴极射线发光器件中的应用研究. 物理学报, 2010, 59(1): 616-619. doi: 10.7498/aps.59.616
    [14] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验. 物理学报, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [15] 杨 波. 一般加速带电带磁的动态黑洞中标量场的熵. 物理学报, 2008, 57(4): 2614-2620. doi: 10.7498/aps.57.2614
    [16] 陈 民, 盛政明, 郑 君, 张 杰. 强激光与高密度气体相互作用中电子和离子加速的数值模拟. 物理学报, 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [17] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速. 物理学报, 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [18] 田友伟, 余 玮, 陆培祥, 何 峰, 马法君, 徐 涵, 静国梁, 钱列加. 紧聚焦的超短超强激光脉冲在真空中加速斜入射的相对论电子. 物理学报, 2005, 54(9): 4208-4212. doi: 10.7498/aps.54.4208
    [19] 何峰, 余玮, 陆培祥, 袁孝, 刘晶儒. 紧聚焦的飞秒激光脉冲在真空中对电子的加速. 物理学报, 2004, 53(1): 165-170. doi: 10.7498/aps.53.165
    [20] 王加祥, 霍裕昆, 冯量. 锥形光场对电子的加速效应. 物理学报, 1996, 45(8): 1264-1274. doi: 10.7498/aps.45.1264
计量
  • 文章访问数:  6180
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-30
  • 修回日期:  2015-03-14
  • 刊出日期:  2015-08-05

/

返回文章
返回