搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅析电子型掺杂铜氧化物超导体的退火过程

贾艳丽 杨桦 袁洁 于和善 冯中沛 夏海亮 石玉君 何格 胡卫 龙有文 朱北沂 金魁

引用本文:
Citation:

浅析电子型掺杂铜氧化物超导体的退火过程

贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁

A brief analysis of annealing process for electron-doped cuprate superconductors

Jia Yan-Li, Yang Hua, Yuan Jie, Yu He-Shan, Feng Zhong-Pei, Xia Hai-Liang, Shi Yu-Jun, He Ge, Hu Wei, Long You-Wen, Zhu Bei-Yi, Jin Kui
PDF
导出引用
  • 铜氧化物高温超导体的发现, 打破了基于电声子相互作用BCS理论所预言的超导转变温度极限, 掀开了高温超导材料探索和高温超导机理研究的序幕. 根据掺杂类型的不同, 铜氧化物超导材料可以分为空穴型掺杂和电子型掺杂两类. 受限于样品, 对电子型掺杂铜氧化物的研究工作远少于空穴型掺杂体系. 本文简要回顾有关电子型掺杂铜氧化物超导体近期研究成果, 通过对比电子型掺杂和空穴型掺杂铜氧化物的相图来阐明电子型掺杂铜氧化物的研究对探索高温超导机理的必要性, 并特别针对电子型掺杂样品制备中的关键因素“退火过程”展开讨论. 结合课题组最新实验结果和相关实验报道我们发现电子型掺杂铜氧化物超导体在制备过程中除受到温度和氧分压的影响外, 退火效果还受到界面应力的强烈调制. 在综合考虑样品生长过程中温度、气氛及应力等多种因素的基础上, 探讨了“保护退火”方法导致电子型体系化学掺杂相图变化的起因.
    The high-Tc copper-oxide superconductors (cuprates) break the limit of superconducting transition temperature predicted by the BCS theory based on electron-phonon coupling, and thus it opens a new chapter in the superconductivity field. According to the valence of substitutents, the cuprates could be categorized into electron-and hole-doped types. So far, an enormous number of high-Tc cuprate superconductors have been intensively studied, most of them are hole-doped. In comparison with the hole-doped cuprates, the advantages of electron-doped cuprates (e.g. lower upper critical field, less-debated origin of “pseudogap”, etc.) make this family of compounds more suitable for unveiling the ground states. However, the difficulties in sample syntheses prevent a profound research in last several decades, in which the role of annealing process during sample preparation has been a big challenge. In this review article, a brief comparison between the electron-doped cuprates and the hole-doped counterparts is made from the aspect of electronic phase diagram, so as to point out the necessity of intensive work on the electron-doped cuprates. Since the electronic properties are highly sensitive to the oxygen content of the sample, the annealing process in sample preparation, which varies the oxygen content, turns out to be a key issue in constructing the phase diagram. Meanwhile, the distinction between electron-and hole-doped cuprates is also manifested in their lattice structures. It has been approved that the stability of the superconducting phase of electron-doped cuprates depends on the tolerance factor t (affected by dopants) doping concentration, temperature, and oxygen position. Yet it is known that the annealing process can vary the oxygen content as well as its position, the details how to adjust oxygen remain unclear. Recently, the experiment on Pr2-xCexCuO4-δ suggests that the oxygen position can be tuned by pressure. And, our new results on [La1.9Ce0.1CuO4-δ/SrCoO3-δ]N superlattices indicate that more factors, like strain, should be taken into account. In addition, the superconductivity in the parent compounds of electron-doped cuprates has emerged by employing a so-called “protective annealing” process. Compared to the traditional one-step annealing process, this new procedure contains an extra annealing step at higher temperature at partial oxygen pressure. In consideration of the new discoveries, as well as the Tc enhancement observed in multilayered structures of electron-doped cuprates by traditional annealing, a promising explanation based on the idea of repairing the oxygen defects in copper oxide planes is proposed for the superconductivity in parent compounds. Finally, we expect a comprehensive understanding of the annealing process, especially the factors such as atmosphere, temperature, and strain, which are not only related to the sample quality, but also to a precise phase diagram of the electron-doped cuprates.
      通信作者: 金魁, kuijin@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2015CB921000)和国家自然科学基金(批准号: 11474338)资助的课题.
      Corresponding author: Jin Kui, kuijin@iphy.ac.cn
    • Funds: Project supported by the National Key Basic Research program of China (Grant No 2015CB921000) and the National Natural Science Foundation of China (Grant No 11474338)
    [1]

    Pomjakushina E 2014 Supercond. Sci. Technol. 27 120501

    [2]

    Onnes H K 1911 Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam 14 113

    [3]

    Schrieffer J R, Brooks J S, 2007 Handbook of high-temperature superconductivity (Springer Science+ Business Media, LLC)

    [4]

    Bednorz J G, Mller K A 1986 Z. Phys. B Con. Mat. 64 189

    [5]

    Chu C W, Hor P H, Meng R L, Gao L, Huang Z J 1987 Science 235 567

    [6]

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese) [赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘金湘, 陈庚华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177]

    [7]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908

    [8]

    Maeda H, Tanaka Y, Fukutomi M, Asano T 1988 Jpn. J. Appl. Phys. 27 L209

    [9]

    Sheng Z Z, Hermann A M 1988 Nature 332 55

    [10]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56

    [11]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260

    [12]

    Tokura Y, Takagi H, Uchida S 1989 Nature 337 345

    [13]

    Armitage N P, Fournier P, Greene R L 2010 Rev. Mod. Phys. 82 2421

    [14]

    Jin K 2008 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [金魁 2008 博士学位论文 (北京: 中国科学院物理研究所)]

    [15]

    Witt T J 1988 Phys. Rev. Lett. 61 1423

    [16]

    Vanbentum P J M, Hoevers H F C, Vankempen H, Vandeleemput L E C, Denivelle M J M F, Schreurs L W M, Smokers R T M, Teunissen P A A 1988 Physica C 153 1718

    [17]

    Gammel P L, Polakos P A, Rice C E, Harriott L R, Bishop D J 1990 Phys. Rev. B 41 2593

    [18]

    Gough C E, Colclough M S, Forgan E M, Jordan R G, Keene M, Muirhead C M, Rae A I M, Thomas N, Abell J S, Sutton S 1987 Nature 326 855

    [19]

    Campuzano J C, Ding H, Norman M R, Randeira M, Bellman A F, Mochiku T, Kadowaki K 1996 Phys. Rev. B 53 14737

    [20]

    Takigawa M, Hammel P C, Heffner R H, Fisk Z 1989 Phys. Rev. B 39 7371

    [21]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [22]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969

    [23]

    Hardy W N, Bonn D A, Morgan D C, Liang R X, Zhang K 1993 Phys. Rev. Lett. 70 3999

    [24]

    Wright D A, Emerson J P, Woodfield B F, Gordon J E, Fisher R A, Phillips N E 1999 Phys. Rev. Lett. 82 1550

    [25]

    Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520

    [26]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [27]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [28]

    Norman M R 2011 Science 332 196

    [29]

    Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C, Hussey N E 2009 Science 323 603

    [30]

    Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73

    [31]

    Butch N P, Jin K, Kirshenbaum K, Greene R L, Paglione J 2012 Proc. Natl. Acad. Sci. 109 8440

    [32]

    Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T, Naito M 2008 Physica C 468 1148

    [33]

    Krockenberger Y, Irie H, Matsumoto O, Yamagami K, Mitsuhashi M, Tsukada A, Naito M, Yamamoto H 2013 Sci. Rep. 3 02235

    [34]

    Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561

    [35]

    Taillefer L 2010 Annu. Rev. Cond. Matter Phys. 1 51

    [36]

    LeBoeuf D, Doiron-Leyraud N, Vignolle B, Sutherland M, Ramshaw B J, Levallois J, Daou R, Laliberté F, Cyr-Choinière O, Chang J, Jo Y J, Balicas L, Liang R, Bonn D A, Hardy W N, Proust C, Taillefer L 2011 Phys. Rev. B 83 054506

    [37]

    da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A, Damascelli A 2015 Science 347 282

    [38]

    LeBoeuf D, Doiron-Leyraud N, Levallois J, Daou R, Bonnemaison J B, Hussey N E, Balicas L, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Adachi S, Proust C, Taillefer L 2007 Nature 450 533

    [39]

    Barisic N, Badoux S, Chan M K, Dorow C, Tabis W, Vignolle B, Yu G, Beard J, Zhao X, Proust C, Greven M 2013 Nat. Phys. 9 761

    [40]

    Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Mang P K, Kaneko N, Greven M, Onose Y, Taguchi Y, Tokura Y 2002 Phys. Rev. Lett. 88 257001

    [41]

    Helm T, Kartsovnik M V, Bartkowiak M, Bittner N, Lambacher M, Erb A, Wosnitza J, Gross R 2009 Phys. Rev. Lett. 103 157002

    [42]

    Helm T, Kartsovnik M V, Sheikin I, Bartkowiak M, Wolff-Fabris F, Bittner N, Biberacher W, Lambacher M, Erb A, Wosnitza J, Gross R 2010 Phys. Rev. Lett. 105 247002

    [43]

    Sebastian S E, Harrison N, Balakirev F F, Altarawneh M M, Goddard P A, Liang R X, Bonn D A, Hardy W N, Lonzarich G G 2014 Nature 511 61

    [44]

    Riggs S C, Vafek O, Kemper J B, Betts J B, Migliori A, Balakirev F F, Hardy W N, Liang R X, Bonn D A, Boebinger G S 2011 Nat. Phys. 7 332

    [45]

    Jiang W, Mao S, Xi X, Jiang X, Peng J, Venkatesan T, Lobb C, Greene R 1994 Phys. Rev. Lett. 73 1291

    [46]

    Lin J, Millis A J 2005 Phys. Rev. B 72 214506

    [47]

    Xiang T, Luo H G, Lu D H, Shen K M, Shen Z X 2009 Phys. Rev. B 79 014524

    [48]

    Horio M, Adachi T, Mori Y, Takahashi A, Yoshida T, Suzuki H, Ambolode II L C C, Okazaki K, Ono K, Kumigashira H, Anzai H, Arita M, Namatame H, Taniguchi M, Ootsuki D, Sawada K, Takahashi M, Mizokawa T, Koike Y, Fujimori A 2015 arXiv:1502.03395 cond-mat

    [49]

    Gurvitch M, Fiory A T 1987 Phys. Rev. Lett. 59 1337

    [50]

    Moriya T, Ueda K 2000 Adv. Phys. 49 555

    [51]

    Rosch A 2000 Phys. Rev. B 62 4945

    [52]

    Doiron-Leyraud N, Auban-Senzier P, de Cotret S R, Bourbonnais C, Jerome D, Bechgaard K, Taillefer L 2009 Phys. Rev. B 80 214531

    [53]

    Taillefer L 2010 Annual Review of Condensed Matter Physics, Vol 1 51

    [54]

    Zhou W Z, Liang W Y 1999 Basic Research on High Temperature Superconductivity (Shanghai: Shanghai Science and Technology Publishers) [周午纵, 梁维耀 1999 高温超导基础研究 (上海: 上海科学技术出版社)]

    [55]

    Bringley J F, Trail S S, Scott B A 1990 J. Solid State Chem. 86 310

    [56]

    Manthiram A, Goodenough J B 1990 J. Solid State Chem. 87 402

    [57]

    Naito M, Hepp M 2000 Jpn. J. Appl. Phys. 39 L485

    [58]

    Naito M, Tsukada A, Greibe T, Sato H 2002 Superconducting and Related Oxides: Physics and Nanoengineering V 4811 140

    [59]

    Takayamamuromachi E, Uchida Y, Kato K 1990 Physica C 165 147

    [60]

    Yamada T, Kinoshita K, Shibata H 1994 Jpn. J. Appl. Phys. 33 L168

    [61]

    Oka K, Shibata H, Kashiwaya S, Eisaki H 2003 Physica C 388 389

    [62]

    Manthiram A, Goodenough J B 1991 J. Solid State Chem. 92 231

    [63]

    Kim J S, Gaskell D R 1993 Physica. C 209 381

    [64]

    Jiang W, Peng J L, Li Z Y, Greene R L 1993 Phys. Rev. B 47 8151

    [65]

    Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Phys. Rev. B 80 094513

    [66]

    Jiang W, Mao S N, Xi X X, Jiang X G, Peng J L, Venkatesan T, Lobb C J, Greene R L 1994 Phys. Rev. Lett. 73 1291

    [67]

    Higgins J S, Dagan Y, Barr M C, Weaver B D, Greene R L 2006 Phys. Rev. B 73 104510

    [68]

    Yu W, Higgins J S, Bach P, Greene R L 2007 Phys. Rev. B 76 020503

    [69]

    Kang H J, Dai P, Campbell B J, Chupas P J, Rosenkranz S, Lee P L, Huang Q, Li S, Komiya S, Ando Y 2007 Nature Mater. 6 224

    [70]

    Jin K, Yuan J, Zhao L, Wu H, Qi X, Zhu B, Cao L, Qiu X, Xu B, Duan X, Zhao B 2006 Phys. Rev. B 74 094518

    [71]

    Roberge G, Charpentier S, Godin-Proulx S, Rauwel P, Truong K D, Fournier P 2009 J. Cryst. Growth 311 1340

    [72]

    Xu X Q, Mao S N, Jiang W, Peng J L, Greene R L 1996 Phys. Rev. B 53 871

    [73]

    Radaelli P G, Jorgensen J D, Schultz A J, Peng J L, Greene R L 1994 Phys. Rev. B 49 15322

    [74]

    Schultz A J, Jorgensen J D, Peng J L, Greene R L 1996 Phys. Rev. B 53 5157

    [75]

    Rotundu C R, Struzhkin V V, Somayazulu M S, Sinogeikin S, Hemley R J, Greene R L 2013 Phys. Rev. B 87 024506

    [76]

    Riou G, Richard P, Jandl S, Poirier M, Fournier P, Nekvasil V, Barilo S N, Kurnevich L A 2004 Phys. Rev. B 69 024511

    [77]

    Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Physical Review B 80 094513

    [78]

    Long Y W, Kaneko Y, Ishiwata S, Taguchi Y, Tokura Y 2011 J. Phys-condens. Mater. 23 245601

    [79]

    Brinkmann M, Rex T, Bach H, Westerholt K 1995 Phys. Rev. Lett. 74 4927

    [80]

    Kojima K M, Krockenberger Y, Yamauchi I, Miyazaki M, Hiraishi M, Koda A, Kadono R, Kumai R, Yamamoto H, Ikeda A, Naito M 2014 Phys. Rev. B 89 180508

    [81]

    Hord R, Luetkens H, Pascua G, Buckow A, Hofmann K, Krockenberger Y, Kurian J, Maeter H, Klauss H H, Pomjakushin V, Suter A, Albert B, Alff L 2010 Phys. Rev. B 82 180508(R)

    [82]

    Weber C, Haule K, Kotliar G 2010 Nat. Phys. 6 574

    [83]

    Sawa A, Kawasaki M, Takagi H, Tokura Y 2002 Phys. Rev. B 66 014531

    [84]

    Jin K, Bach P, Zhang X H, Grupel U, Zohar E, Diamant I, Dagan Y, Smadici S, Abbamonte P, Greene R L 2011 Phys. Rev. B 83 060511

    [85]

    Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782

  • [1]

    Pomjakushina E 2014 Supercond. Sci. Technol. 27 120501

    [2]

    Onnes H K 1911 Proceedings of the Koninklijke Akademie Van Wetenschappen Te Amsterdam 14 113

    [3]

    Schrieffer J R, Brooks J S, 2007 Handbook of high-temperature superconductivity (Springer Science+ Business Media, LLC)

    [4]

    Bednorz J G, Mller K A 1986 Z. Phys. B Con. Mat. 64 189

    [5]

    Chu C W, Hor P H, Meng R L, Gao L, Huang Z J 1987 Science 235 567

    [6]

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese) [赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘金湘, 陈庚华, 李山林, 郭树权, 何业冶 1987 科学通报 32 177]

    [7]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908

    [8]

    Maeda H, Tanaka Y, Fukutomi M, Asano T 1988 Jpn. J. Appl. Phys. 27 L209

    [9]

    Sheng Z Z, Hermann A M 1988 Nature 332 55

    [10]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56

    [11]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260

    [12]

    Tokura Y, Takagi H, Uchida S 1989 Nature 337 345

    [13]

    Armitage N P, Fournier P, Greene R L 2010 Rev. Mod. Phys. 82 2421

    [14]

    Jin K 2008 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [金魁 2008 博士学位论文 (北京: 中国科学院物理研究所)]

    [15]

    Witt T J 1988 Phys. Rev. Lett. 61 1423

    [16]

    Vanbentum P J M, Hoevers H F C, Vankempen H, Vandeleemput L E C, Denivelle M J M F, Schreurs L W M, Smokers R T M, Teunissen P A A 1988 Physica C 153 1718

    [17]

    Gammel P L, Polakos P A, Rice C E, Harriott L R, Bishop D J 1990 Phys. Rev. B 41 2593

    [18]

    Gough C E, Colclough M S, Forgan E M, Jordan R G, Keene M, Muirhead C M, Rae A I M, Thomas N, Abell J S, Sutton S 1987 Nature 326 855

    [19]

    Campuzano J C, Ding H, Norman M R, Randeira M, Bellman A F, Mochiku T, Kadowaki K 1996 Phys. Rev. B 53 14737

    [20]

    Takigawa M, Hammel P C, Heffner R H, Fisk Z 1989 Phys. Rev. B 39 7371

    [21]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [22]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969

    [23]

    Hardy W N, Bonn D A, Morgan D C, Liang R X, Zhang K 1993 Phys. Rev. Lett. 70 3999

    [24]

    Wright D A, Emerson J P, Woodfield B F, Gordon J E, Fisher R A, Phillips N E 1999 Phys. Rev. Lett. 82 1550

    [25]

    Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520

    [26]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [27]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [28]

    Norman M R 2011 Science 332 196

    [29]

    Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C, Hussey N E 2009 Science 323 603

    [30]

    Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73

    [31]

    Butch N P, Jin K, Kirshenbaum K, Greene R L, Paglione J 2012 Proc. Natl. Acad. Sci. 109 8440

    [32]

    Matsumoto O, Utsuki A, Tsukada A, Yamamoto H, Manabe T, Naito M 2008 Physica C 468 1148

    [33]

    Krockenberger Y, Irie H, Matsumoto O, Yamagami K, Mitsuhashi M, Tsukada A, Naito M, Yamamoto H 2013 Sci. Rep. 3 02235

    [34]

    Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561

    [35]

    Taillefer L 2010 Annu. Rev. Cond. Matter Phys. 1 51

    [36]

    LeBoeuf D, Doiron-Leyraud N, Vignolle B, Sutherland M, Ramshaw B J, Levallois J, Daou R, Laliberté F, Cyr-Choinière O, Chang J, Jo Y J, Balicas L, Liang R, Bonn D A, Hardy W N, Proust C, Taillefer L 2011 Phys. Rev. B 83 054506

    [37]

    da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A, Damascelli A 2015 Science 347 282

    [38]

    LeBoeuf D, Doiron-Leyraud N, Levallois J, Daou R, Bonnemaison J B, Hussey N E, Balicas L, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Adachi S, Proust C, Taillefer L 2007 Nature 450 533

    [39]

    Barisic N, Badoux S, Chan M K, Dorow C, Tabis W, Vignolle B, Yu G, Beard J, Zhao X, Proust C, Greven M 2013 Nat. Phys. 9 761

    [40]

    Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Mang P K, Kaneko N, Greven M, Onose Y, Taguchi Y, Tokura Y 2002 Phys. Rev. Lett. 88 257001

    [41]

    Helm T, Kartsovnik M V, Bartkowiak M, Bittner N, Lambacher M, Erb A, Wosnitza J, Gross R 2009 Phys. Rev. Lett. 103 157002

    [42]

    Helm T, Kartsovnik M V, Sheikin I, Bartkowiak M, Wolff-Fabris F, Bittner N, Biberacher W, Lambacher M, Erb A, Wosnitza J, Gross R 2010 Phys. Rev. Lett. 105 247002

    [43]

    Sebastian S E, Harrison N, Balakirev F F, Altarawneh M M, Goddard P A, Liang R X, Bonn D A, Hardy W N, Lonzarich G G 2014 Nature 511 61

    [44]

    Riggs S C, Vafek O, Kemper J B, Betts J B, Migliori A, Balakirev F F, Hardy W N, Liang R X, Bonn D A, Boebinger G S 2011 Nat. Phys. 7 332

    [45]

    Jiang W, Mao S, Xi X, Jiang X, Peng J, Venkatesan T, Lobb C, Greene R 1994 Phys. Rev. Lett. 73 1291

    [46]

    Lin J, Millis A J 2005 Phys. Rev. B 72 214506

    [47]

    Xiang T, Luo H G, Lu D H, Shen K M, Shen Z X 2009 Phys. Rev. B 79 014524

    [48]

    Horio M, Adachi T, Mori Y, Takahashi A, Yoshida T, Suzuki H, Ambolode II L C C, Okazaki K, Ono K, Kumigashira H, Anzai H, Arita M, Namatame H, Taniguchi M, Ootsuki D, Sawada K, Takahashi M, Mizokawa T, Koike Y, Fujimori A 2015 arXiv:1502.03395 cond-mat

    [49]

    Gurvitch M, Fiory A T 1987 Phys. Rev. Lett. 59 1337

    [50]

    Moriya T, Ueda K 2000 Adv. Phys. 49 555

    [51]

    Rosch A 2000 Phys. Rev. B 62 4945

    [52]

    Doiron-Leyraud N, Auban-Senzier P, de Cotret S R, Bourbonnais C, Jerome D, Bechgaard K, Taillefer L 2009 Phys. Rev. B 80 214531

    [53]

    Taillefer L 2010 Annual Review of Condensed Matter Physics, Vol 1 51

    [54]

    Zhou W Z, Liang W Y 1999 Basic Research on High Temperature Superconductivity (Shanghai: Shanghai Science and Technology Publishers) [周午纵, 梁维耀 1999 高温超导基础研究 (上海: 上海科学技术出版社)]

    [55]

    Bringley J F, Trail S S, Scott B A 1990 J. Solid State Chem. 86 310

    [56]

    Manthiram A, Goodenough J B 1990 J. Solid State Chem. 87 402

    [57]

    Naito M, Hepp M 2000 Jpn. J. Appl. Phys. 39 L485

    [58]

    Naito M, Tsukada A, Greibe T, Sato H 2002 Superconducting and Related Oxides: Physics and Nanoengineering V 4811 140

    [59]

    Takayamamuromachi E, Uchida Y, Kato K 1990 Physica C 165 147

    [60]

    Yamada T, Kinoshita K, Shibata H 1994 Jpn. J. Appl. Phys. 33 L168

    [61]

    Oka K, Shibata H, Kashiwaya S, Eisaki H 2003 Physica C 388 389

    [62]

    Manthiram A, Goodenough J B 1991 J. Solid State Chem. 92 231

    [63]

    Kim J S, Gaskell D R 1993 Physica. C 209 381

    [64]

    Jiang W, Peng J L, Li Z Y, Greene R L 1993 Phys. Rev. B 47 8151

    [65]

    Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Phys. Rev. B 80 094513

    [66]

    Jiang W, Mao S N, Xi X X, Jiang X G, Peng J L, Venkatesan T, Lobb C J, Greene R L 1994 Phys. Rev. Lett. 73 1291

    [67]

    Higgins J S, Dagan Y, Barr M C, Weaver B D, Greene R L 2006 Phys. Rev. B 73 104510

    [68]

    Yu W, Higgins J S, Bach P, Greene R L 2007 Phys. Rev. B 76 020503

    [69]

    Kang H J, Dai P, Campbell B J, Chupas P J, Rosenkranz S, Lee P L, Huang Q, Li S, Komiya S, Ando Y 2007 Nature Mater. 6 224

    [70]

    Jin K, Yuan J, Zhao L, Wu H, Qi X, Zhu B, Cao L, Qiu X, Xu B, Duan X, Zhao B 2006 Phys. Rev. B 74 094518

    [71]

    Roberge G, Charpentier S, Godin-Proulx S, Rauwel P, Truong K D, Fournier P 2009 J. Cryst. Growth 311 1340

    [72]

    Xu X Q, Mao S N, Jiang W, Peng J L, Greene R L 1996 Phys. Rev. B 53 871

    [73]

    Radaelli P G, Jorgensen J D, Schultz A J, Peng J L, Greene R L 1994 Phys. Rev. B 49 15322

    [74]

    Schultz A J, Jorgensen J D, Peng J L, Greene R L 1996 Phys. Rev. B 53 5157

    [75]

    Rotundu C R, Struzhkin V V, Somayazulu M S, Sinogeikin S, Hemley R J, Greene R L 2013 Phys. Rev. B 87 024506

    [76]

    Riou G, Richard P, Jandl S, Poirier M, Fournier P, Nekvasil V, Barilo S N, Kurnevich L A 2004 Phys. Rev. B 69 024511

    [77]

    Wang Y L, Huang Y, Shan L, Li S L, Dai P C, Ren C, Wen H H 2009 Physical Review B 80 094513

    [78]

    Long Y W, Kaneko Y, Ishiwata S, Taguchi Y, Tokura Y 2011 J. Phys-condens. Mater. 23 245601

    [79]

    Brinkmann M, Rex T, Bach H, Westerholt K 1995 Phys. Rev. Lett. 74 4927

    [80]

    Kojima K M, Krockenberger Y, Yamauchi I, Miyazaki M, Hiraishi M, Koda A, Kadono R, Kumai R, Yamamoto H, Ikeda A, Naito M 2014 Phys. Rev. B 89 180508

    [81]

    Hord R, Luetkens H, Pascua G, Buckow A, Hofmann K, Krockenberger Y, Kurian J, Maeter H, Klauss H H, Pomjakushin V, Suter A, Albert B, Alff L 2010 Phys. Rev. B 82 180508(R)

    [82]

    Weber C, Haule K, Kotliar G 2010 Nat. Phys. 6 574

    [83]

    Sawa A, Kawasaki M, Takagi H, Tokura Y 2002 Phys. Rev. B 66 014531

    [84]

    Jin K, Bach P, Zhang X H, Grupel U, Zohar E, Diamant I, Dagan Y, Smadici S, Abbamonte P, Greene R L 2011 Phys. Rev. B 83 060511

    [85]

    Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782

  • [1] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [2] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介. 物理学报, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [3] 金魁, 吴颉. 高温超导体组合薄膜和相图表征高通量方法. 物理学报, 2021, 70(1): 017403. doi: 10.7498/aps.70.20202102
    [4] 胡江平. 探索非常规高温超导体. 物理学报, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [5] 徐大庆, 张义门, 娄永乐, 童军. 热退火对Mn离子注入非故意掺杂GaN微结构、光学及磁学特性的影响. 物理学报, 2014, 63(4): 047501. doi: 10.7498/aps.63.047501
    [6] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [7] 朱剑云, 刘璐, 李育强, 徐静平. 退火工艺对LaTiON和HfLaON存储层金属-氧化物-氮化物-氧化物-硅存储器特性的影响. 物理学报, 2013, 62(3): 038501. doi: 10.7498/aps.62.038501
    [8] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [9] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [10] 胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩. 循环氧化/退火制备GeOI薄膜材料及其性质研究. 物理学报, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [11] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究. 物理学报, 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [12] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射. 物理学报, 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [13] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [14] 吴世亮, 陈叶清, 吴奕初, 王少阶, 温熙宇, 翟同广. AA 2037新型连铸铝合金热轧板退火的正电子湮没研究. 物理学报, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [15] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [16] 方泽波, 龚恒翔, 刘雪芹, 徐大印, 黄春明, 王印月. 退火对多晶ZnO薄膜结构与发光特性的影响. 物理学报, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [17] 陈莺飞, 彭 炜, 李 洁, 陈 珂, 朱小红, 王 萍, 曾 光, 郑东宁, 李 林. 高气压反射式高能电子衍射仪监控脉冲激光外延氧化物薄膜. 物理学报, 2003, 52(10): 2601-2606. doi: 10.7498/aps.52.2601
    [18] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究. 物理学报, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [19] 李宏成, 王瑞兰, 魏斌. 介质谐振器法测量高温超导薄膜微波表面电阻的误差分析. 物理学报, 2001, 50(5): 938-941. doi: 10.7498/aps.50.938
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  3816
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-11
  • 修回日期:  2015-05-06
  • 刊出日期:  2015-11-05

浅析电子型掺杂铜氧化物超导体的退火过程

  • 1. 中国科学院物理研究所, 北京凝聚态国家实验室, 北京 100190
  • 通信作者: 金魁, kuijin@iphy.ac.cn
    基金项目: 国家重点基础研究发展计划(批准号: 2015CB921000)和国家自然科学基金(批准号: 11474338)资助的课题.

摘要: 铜氧化物高温超导体的发现, 打破了基于电声子相互作用BCS理论所预言的超导转变温度极限, 掀开了高温超导材料探索和高温超导机理研究的序幕. 根据掺杂类型的不同, 铜氧化物超导材料可以分为空穴型掺杂和电子型掺杂两类. 受限于样品, 对电子型掺杂铜氧化物的研究工作远少于空穴型掺杂体系. 本文简要回顾有关电子型掺杂铜氧化物超导体近期研究成果, 通过对比电子型掺杂和空穴型掺杂铜氧化物的相图来阐明电子型掺杂铜氧化物的研究对探索高温超导机理的必要性, 并特别针对电子型掺杂样品制备中的关键因素“退火过程”展开讨论. 结合课题组最新实验结果和相关实验报道我们发现电子型掺杂铜氧化物超导体在制备过程中除受到温度和氧分压的影响外, 退火效果还受到界面应力的强烈调制. 在综合考虑样品生长过程中温度、气氛及应力等多种因素的基础上, 探讨了“保护退火”方法导致电子型体系化学掺杂相图变化的起因.

English Abstract

参考文献 (85)

目录

    /

    返回文章
    返回