搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究

沈杰 魏宾 周静 Shen Shirley Zhiqi 薛广杰 刘韩星 陈文

引用本文:
Citation:

Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究

沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文

First-principle study of electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3

Shen Jie, Wei Bin, Zhou Jing, Shen Shirley Zhiqi, Xue Guang-Jie, Liu Han-Xing, Chen Wen
PDF
导出引用
  • Ba(Mg1/3Nb2/3)O3 (BMN)复合钙钛矿陶瓷具有高介电常数和高品质因子等介电性能, 预示了其在光学领域的应用前景. 本文采用第一性原理方法计算了BMN的电子结构, 对其本征光学性能进行分析和预测. 对固相合成六方相BMN的XRD 测试结果进行Rietveld精修(加权方差因子Rwp=6.73%, 方差因子Rp=5.05%), 在此基础上建立晶体结构模型并对其进行几何优化. 运用基于密度泛函理论(DFT)的平面波赝势方法, 对六方相BMN晶体模型的能带、态密度和光学性质进行理论计算. 结果表明BMN的能带结构为间接带隙, 禁带宽度Eg=2.728 eV. Mg-O和Ba-O以离子键结合为主, Nb-O以共价键结合为主, 费米面附近的能带主要由O-2p和Nb-4d 态电子占据, 形成了d-p轨道杂化. 修正带隙后, 计算了BMN沿[100]和[001]方向上的复介电函数、吸收系数和反射率等光学性质. 结果表明, BMN近乎光学各向同性, 在可见光区, 其本征透过率为77%T n <2.14, 并伴随一定的色散现象. 实验测试结果与理论计算结果相吻合.
    Transparent ceramics have been widely researched for their broad range of applications, e.g. from optical windows to laser and optoelectronic switches. However, the challenge is to obtain the optical materials with high refractive index to miniaturize optical functional elements, such as lens for optical information storage and waveguides for flat optical components. The hexagonal complex perovskite Ba(Mg1/3Nb2/3)O3(BMN) ceramic, being widely researched as a type of microwave dielectric ceramics, presents the excellent dielectric properties such as high dielectric constant and high Q value, which indicate its potential application as optical materials. In this paper, the electronic structure of BMN is calculated by using the first principle method, to analyze and predict its intrinsic optical properties. The hexagonal complex perovskite BMN ceramic is synthesized using conventional solid-state reaction at 1600 ℃ for 24 h. The structure parameters are obtained through Rietveld refinement of X-ray diffraction data. The crystal model is established, based on the Rietveld refinement result of the XRD test on synthesized BMN (with the weighted profile R-factor Rwp=6.73%, the profile R-factor Rp=5.05%), and then the crystal geometry optimized. With the optimized crystal model, the energy band structure, density of states and optical properties of BMN are calculated using the first principle method based on density functional theory (DFT) with local density approximation (LDA). Results show that BMN has an indirect band gap of 2.728 eV. There are the strong ionic interactions between Mg and O as well as Ba and O, while there is covalent interaction between Nb and O. The energy band near the Fermi level is mainly occupied by O-2p and Nb-4d electrons, which forms the d-p hybrid orbits. With real band gap correction, the optical properties of BMN are obtained from the definition of direct transition probability and the Kramers-Kronig dispersion relations along the polarization directions [100] and [001], including the complex dielectric function, absorption coefficients and reflectivity, respectively. It is shown that the optical properties of BMN are nearly isotropic. According to the Lambert-Beer's law, the intrinsic transmittance of BMN ranges from 77% to 83% in the visible region, and its refractive index is dispersive, ranging from 1.91 to 2.14. Experimental test results are consistent with the theoretical calculation results.
      通信作者: 陈文, chenw@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51202174, 51102191)、湖北省科技计划项目(批准号: 2014CFB854)和武汉市科学技术计划项目(批准号: 2013010501010137)资助的课题.
      Corresponding author: Chen Wen, chenw@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51202174, 51102191), the Science and Technology Program of Hubei, China (Grant No. 2014CFB854) and the Science and Technology Program of Wuhan, China (Grant No. 2013010501010137).
    [1]

    Zhang B, Zhang H J, Yang Q H, Lu S Z 2010 Acta Phys. Sin. 59 1333 (in Chinese) [张斌, 张浩佳, 杨秋红, 陆神洲 2010 物理学报 59 1333]

    [2]

    Rubat du Merac M, Kleebe H J, Mller M M, Reimanis I E 2013 J. Am. Ceram. Soc. 96 3341

    [3]

    Huang Y H, Jiang D L, Zhang J X, Lin Q L 2010 Acta Phys. Sin. 59 0300 (in Chinese) [黄毅华, 江东亮, 张景贤, 林庆玲 2010 物理学报 59 0300]

    [4]

    Lu S Z, Yang Q H 2012 Chin. Phys. B 21 047801

    [5]

    Ruan W, Li G, Zeng J, Kamzina L S, Zeng H, Zheng L, Ding A 2012 J. Am. Ceram. Soc. 95 2103

    [6]

    Tamura H, Sagala D A, Wakino K 1986 Jpn. J. Appl. Phys. 25 787

    [7]

    Sagala D A, Koyasu S 1993 J. Am. Ceram. Soc. 76 2433

    [8]

    Lu C H, Tsai C C 1996 J. Mater. Res. 11 1219

    [9]

    Ohsato H 2012 Ceram. Int. 38 S141

    [10]

    Kaminskii A, Tanaka N, Eichler H, Rhee H, Ueda K, Takaichi K, Shirakawa A, Tokurakawa M, Kintaka Y, Kuretake S 2007 Laser Phys. Lett. 4 819

    [11]

    Kintaka Y, Kuretake S, Tanaka N, Kageyama K, Takagi H 2010 J. Am. Ceram. Soc. 93 1114

    [12]

    Huang Y H, Jiang D L, Zhang J X, Lin Q L 2010 Ceram. Int. 36 1615

    [13]

    Krell A, Hutzler T 2007 US Patent 7247589

    [14]

    Shi Y X, Shen J, Zhou J, Xu J, Chen W, Qi Y Y, Jiao L 2015 Ceram. Int. 41 253

    [15]

    Ching W Y, Xu Y N 1994 J. Am. Ceram. Soc. 77 404

    [16]

    Sui P F, Dai Z H, Zhang X L, Zhao Y C 2015 Chin. Phys. Lett. 32 077101

    [17]

    Huang D H, Yang J S, Cao Q L, Wan M J, Li Q, Sun L, Wang F H 2014 Chin. Phys. Lett. 31 037103

    [18]

    Takahashi T 2000 Jpn. J. Appl. Phys. 39 5637

    [19]

    Dai Y D, Zhao G H, Liu H X 2009 J. Appl. Phys. 105 034111

    [20]

    Diao C L, Wang C H, Luo N N, Qi Z M, Shao T, Wang Y Y, Lu J, Wang Q C, Kuang X J, Fang L, Shi F, Jing X P 2014 J. Appl. Phys. 115 114103

    [21]

    Materials Studio Release 4.0.0.02005 Accelrys Software Inc. San Diego

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    Lejaeghere K, Speybroeck V V, Oost G V, Cottenier S 2014 Crit. Rev. Solid State 39 1

    [24]

    Shen X C 2002 Spectroscopy and Optical Properties of Semiconductor (Beijing: Science Press) pp76-94 (in Chinese) [沈学础 2002 半导体光谱和光学性质(北京: 科学出版社 第76–94页]

    [25]

    Fang R C 2001 Solid State Spectroscopy(Hefei: Press of University of Science and Technology of China) pp71-75 (in Chinese) [方容川 2001 固体光谱学(合肥: 中国科学技术大学出版社) 第71–75页]

    [26]

    Janaswamy S, Murthy G S, Dias E D, Murthy V R K 2002 Mater. Lett. 55 414

    [27]

    Dai Y D 2009 Ph. D. Dissertation (Wuhan: Wuhan University of Technology) (in Chinese) [代亚东 2009 博士学位论文 (武汉: 武汉理工大学)]

    [28]

    Shen J, Zhou J, Zhu J, Sun H J, Liu H X, Chen W 2011 Ferroelectrics 356 111

    [29]

    Tauc J, Abeles F 1972 Optical Properties of Solids vol. 372 (Amsterdam, The Netherlands: North-Holland Publishers)

    [30]

    Rinke P, Qteish A, Neugebauer J, Scheffler M 2008 Phys. Stat. Sol. 245 929

    [31]

    Samantaray C B, Sim H, Hwang H 2005 Microelectron. J. 36 725

    [32]

    Liu X D, Jiang E Y, Li Z Q, Song Q G 2008 Appl. Phys. Lett. 92 252104

    [33]

    Gou H, Gao F, Zhang J 2010 Comput. Mater. Sci. 49 552

    [34]

    Singh D J 2008 Appl. Phys. Lett. 92 201908

    [35]

    Cheng Z X, Wang X L 2008 Appl. Phys. Lett. 92 261915

    [36]

    Cheng J, Agrawal D, Zhang Y, Roy R 2002 Mater. Lett. 56 587

  • [1]

    Zhang B, Zhang H J, Yang Q H, Lu S Z 2010 Acta Phys. Sin. 59 1333 (in Chinese) [张斌, 张浩佳, 杨秋红, 陆神洲 2010 物理学报 59 1333]

    [2]

    Rubat du Merac M, Kleebe H J, Mller M M, Reimanis I E 2013 J. Am. Ceram. Soc. 96 3341

    [3]

    Huang Y H, Jiang D L, Zhang J X, Lin Q L 2010 Acta Phys. Sin. 59 0300 (in Chinese) [黄毅华, 江东亮, 张景贤, 林庆玲 2010 物理学报 59 0300]

    [4]

    Lu S Z, Yang Q H 2012 Chin. Phys. B 21 047801

    [5]

    Ruan W, Li G, Zeng J, Kamzina L S, Zeng H, Zheng L, Ding A 2012 J. Am. Ceram. Soc. 95 2103

    [6]

    Tamura H, Sagala D A, Wakino K 1986 Jpn. J. Appl. Phys. 25 787

    [7]

    Sagala D A, Koyasu S 1993 J. Am. Ceram. Soc. 76 2433

    [8]

    Lu C H, Tsai C C 1996 J. Mater. Res. 11 1219

    [9]

    Ohsato H 2012 Ceram. Int. 38 S141

    [10]

    Kaminskii A, Tanaka N, Eichler H, Rhee H, Ueda K, Takaichi K, Shirakawa A, Tokurakawa M, Kintaka Y, Kuretake S 2007 Laser Phys. Lett. 4 819

    [11]

    Kintaka Y, Kuretake S, Tanaka N, Kageyama K, Takagi H 2010 J. Am. Ceram. Soc. 93 1114

    [12]

    Huang Y H, Jiang D L, Zhang J X, Lin Q L 2010 Ceram. Int. 36 1615

    [13]

    Krell A, Hutzler T 2007 US Patent 7247589

    [14]

    Shi Y X, Shen J, Zhou J, Xu J, Chen W, Qi Y Y, Jiao L 2015 Ceram. Int. 41 253

    [15]

    Ching W Y, Xu Y N 1994 J. Am. Ceram. Soc. 77 404

    [16]

    Sui P F, Dai Z H, Zhang X L, Zhao Y C 2015 Chin. Phys. Lett. 32 077101

    [17]

    Huang D H, Yang J S, Cao Q L, Wan M J, Li Q, Sun L, Wang F H 2014 Chin. Phys. Lett. 31 037103

    [18]

    Takahashi T 2000 Jpn. J. Appl. Phys. 39 5637

    [19]

    Dai Y D, Zhao G H, Liu H X 2009 J. Appl. Phys. 105 034111

    [20]

    Diao C L, Wang C H, Luo N N, Qi Z M, Shao T, Wang Y Y, Lu J, Wang Q C, Kuang X J, Fang L, Shi F, Jing X P 2014 J. Appl. Phys. 115 114103

    [21]

    Materials Studio Release 4.0.0.02005 Accelrys Software Inc. San Diego

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    Lejaeghere K, Speybroeck V V, Oost G V, Cottenier S 2014 Crit. Rev. Solid State 39 1

    [24]

    Shen X C 2002 Spectroscopy and Optical Properties of Semiconductor (Beijing: Science Press) pp76-94 (in Chinese) [沈学础 2002 半导体光谱和光学性质(北京: 科学出版社 第76–94页]

    [25]

    Fang R C 2001 Solid State Spectroscopy(Hefei: Press of University of Science and Technology of China) pp71-75 (in Chinese) [方容川 2001 固体光谱学(合肥: 中国科学技术大学出版社) 第71–75页]

    [26]

    Janaswamy S, Murthy G S, Dias E D, Murthy V R K 2002 Mater. Lett. 55 414

    [27]

    Dai Y D 2009 Ph. D. Dissertation (Wuhan: Wuhan University of Technology) (in Chinese) [代亚东 2009 博士学位论文 (武汉: 武汉理工大学)]

    [28]

    Shen J, Zhou J, Zhu J, Sun H J, Liu H X, Chen W 2011 Ferroelectrics 356 111

    [29]

    Tauc J, Abeles F 1972 Optical Properties of Solids vol. 372 (Amsterdam, The Netherlands: North-Holland Publishers)

    [30]

    Rinke P, Qteish A, Neugebauer J, Scheffler M 2008 Phys. Stat. Sol. 245 929

    [31]

    Samantaray C B, Sim H, Hwang H 2005 Microelectron. J. 36 725

    [32]

    Liu X D, Jiang E Y, Li Z Q, Song Q G 2008 Appl. Phys. Lett. 92 252104

    [33]

    Gou H, Gao F, Zhang J 2010 Comput. Mater. Sci. 49 552

    [34]

    Singh D J 2008 Appl. Phys. Lett. 92 201908

    [35]

    Cheng Z X, Wang X L 2008 Appl. Phys. Lett. 92 261915

    [36]

    Cheng J, Agrawal D, Zhang Y, Roy R 2002 Mater. Lett. 56 587

  • [1] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [2] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究. 物理学报, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [3] 王闯, 赵永红, 刘永. Ga1–xCrxSb (x = 0.25, 0.50, 0.75) 磁学和光学性质的第一性原理研究. 物理学报, 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [4] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [5] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [6] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [7] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [8] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [9] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [10] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [12] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [13] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究 . 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [14] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [15] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [16] 章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣. 锐钛矿相和金红石相TiO2:Nb的光电性能研究. 物理学报, 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [17] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [18] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [19] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  3560
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-15
  • 修回日期:  2015-07-22
  • 刊出日期:  2015-11-05

Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究

  • 1. 武汉理工大学材料复合新技术国家重点实验室, 武汉 430070;
  • 2. 武汉理工大学材料科学与工程学院, 武汉 430070;
  • 3. CSIRO Materials Science and Engineering, Highett, VIC 3190, Australia
  • 通信作者: 陈文, chenw@whut.edu.cn
    基金项目: 国家自然科学基金(批准号: 51202174, 51102191)、湖北省科技计划项目(批准号: 2014CFB854)和武汉市科学技术计划项目(批准号: 2013010501010137)资助的课题.

摘要: Ba(Mg1/3Nb2/3)O3 (BMN)复合钙钛矿陶瓷具有高介电常数和高品质因子等介电性能, 预示了其在光学领域的应用前景. 本文采用第一性原理方法计算了BMN的电子结构, 对其本征光学性能进行分析和预测. 对固相合成六方相BMN的XRD 测试结果进行Rietveld精修(加权方差因子Rwp=6.73%, 方差因子Rp=5.05%), 在此基础上建立晶体结构模型并对其进行几何优化. 运用基于密度泛函理论(DFT)的平面波赝势方法, 对六方相BMN晶体模型的能带、态密度和光学性质进行理论计算. 结果表明BMN的能带结构为间接带隙, 禁带宽度Eg=2.728 eV. Mg-O和Ba-O以离子键结合为主, Nb-O以共价键结合为主, 费米面附近的能带主要由O-2p和Nb-4d 态电子占据, 形成了d-p轨道杂化. 修正带隙后, 计算了BMN沿[100]和[001]方向上的复介电函数、吸收系数和反射率等光学性质. 结果表明, BMN近乎光学各向同性, 在可见光区, 其本征透过率为77%T n <2.14, 并伴随一定的色散现象. 实验测试结果与理论计算结果相吻合.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回