搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的X射线脉冲星信号模拟方法

薛梦凡 李小平 孙海峰 刘兵 方海燕 沈利荣

引用本文:
Citation:

一种新的X射线脉冲星信号模拟方法

薛梦凡, 李小平, 孙海峰, 刘兵, 方海燕, 沈利荣

A new simulation method of X-ray pulsar signals

Xue Meng-Fan, Li Xiao-Ping, Sun Hai-Feng, Liu Bing, Fang Hai-Yan, Shen Li-Rong
PDF
导出引用
  • 由于无法在地面直接观测到X射线脉冲星信号, 且空间飞行探测耗时长, 成本高, 模拟具有真实物理特征的X射线脉冲星信号对X射线脉冲星信号处理方法及导航方案的验证具有重要意义. 本文提出了一种利用太阳系质心处脉冲星信号模型和航天器轨道信息, 建立航天器处实时光子到达速率函数, 再利用尺度变换法产生光子到达时间序列的脉冲星信号模拟新方法. 该方法真实还原了脉冲星信号的频率缓变特性, 考虑了动态探测环境下的相对论效应, 且避免了现有模拟航天器处光子序列方法中的迭代过程, 产生非齐次泊松光子到达时间序列的运算量也低于常用的齐次泊松过程筛选法和反函数递推法. 数值仿真从频率特性、流量特性、轮廓相似度及与实测数据的接近程度四个方面验证了该模拟方法的正确性.
    Since X-ray pulsar signals cannot be directly detected on the ground, and the space flight detection is both time-consuming and costly, simulation of X-ray pulsar signals with true physical characteristics is of great importance to the validation of various X-ray pulsar signal processing algorithms and X-ray pulsar-based navigation strategies. In this paper, a new simulation method of X-ray pulsar signals is proposed, in which according to the pulsar signal model at the solar system Barycenter (SSB) and the trajectory information of the spacecraft, the real-time photon arrival rate function at the spacecraft is established, then based on this, a scale transforming method is employed to directly generate the photon event time stamps at the spacecraft which follow a non-homogeneous Poisson process. The proposed simulation method takes into account the pulsar spin down law and the influences of the largescale time-space effects introduced in the process of dynamic detection, and thus avoids the complicated iteration procedure involved in the state of the art simulation methods. Finally, a series of simulations are designed to evaluate the performance of the proposed simulation method. The main results can be concluded as follows: 1) The simulated photon event timestamps have a slowly changing period, which are consistent with the pulsar spin down law. 2) The observed pulsar profile accurately reflects how the radiation intensity of pulsars changes over time within a phase cycle, and it has a Pearson correlation coefficient of up to 0.99 with a standard profile. 3) The simulated average fluxes of the pulsars are very close to the true values, and thereby verifies the correctness of the proposed simulation method from an overall point of view. 4) The simulated photon series are very similar to the real data detected by the RXTE explorer, and when the simulation time is longer than 50 s, the relevancy between the simulated profile and the profile obtained from the real data is higher than 0.9. 5) The computational cost of the scale transforming method is much less than that for the commonly used Poisson sifting method and the inverse mapping method. The above results show the validity and high efficiency of the proposed method in terms of the period property, the profile and flux accuracy, the similarity to the RXTE real data and the computational cost.
      通信作者: 薛梦凡, xuemfxd@126.com
      Corresponding author: Xue Meng-Fan, xuemfxd@126.com
    [1]

    Shuai P, Li M, Chen S L, Huang Z 2009 Principles and Techniques of X-ray Pulsar Based Navigation System (Beijing: China Astronauic Publishing House) p15 (in Chinese) [帅平, 李明, 陈绍龙, 黄震 2009 X射线脉冲星导航系统原理与方法 (北京: 中国宇航出版社) 第15页]

    [2]

    Sheikh S I 2005 Ph. D. Dissertation (Maryland: University of Maryland)

    [3]

    Hanson J E 1996 Ph. D. Dissertation (USA: Stanford University)

    [4]

    Emadzadeh A A, Speyer J L 2010 IEEE Trans. Sig. Proc. 58 4484

    [5]

    Emadzadeh A A, Speyer J L 2011 Navigation in space by X-ray pulsars (Berlin: Springer) pp24-26

    [6]

    Sala J, Urruela A, Villares X 2004 ARIADNA Study 03 4202

    [7]

    Bernhardt M G, Prinz T, Becker W, Walter U 2010 Proceedings of High Time Resolution Astrophysics IV The Era of Extremely Large Telescopes-HTRA-IV Agios Nikolaos, Crete, Greece, May 5-7, 2010 p1

    [8]

    Bernhardt M G, Becker W, Prinz T, Breithuth F M, Walter U 2011 Proceedings of 2 nd International Conference on Space TechnologyAthens, Greece, September 15-17, 2011 p1

    [9]

    Becker W 2009 X-ray emission from pulsars and neutron stars, in neutron stars and pulsars (Berlin: Springer) pp91-95

    [10]

    Sun H F, Bao W M, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701 (in Chinese) [孙海峰, 包为民, 方海燕, 李小平 2014 物理学报 63 069701]

    [11]

    Huang L W, Liang B, Zhang T, Zhang C H 2012 Science in China Series G: Physics, Mechanics & Astronomy 55 527

    [12]

    Ge M Y 2012 Ph. D. Dissertation (Beijing: Institute of High Energy Physics, Chinese Academy of Sciences) (in Chinese) [葛明玉 2012 博士学位论文 (北京: 中国科学院高能物理研究所)]

    [13]

    Sun H F, Xie K, Li X P, Fang H Y, Liu X P, Fu L Z, Sun H J, Xue M F 2013 Acta Phys. Sin. 62 109701 (in Chinese) [孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡 2013 物理学报 62 109701]

    [14]

    Li J X, Ke X Z 2009 Sci. Sin. G: Pysica, Mechanica & Astronomica 39 311 (in Chinese) [李建勋, 柯熙政 2009 中国科学 G 辑: 物理学, 力学, 天文学 39 311]

    [15]

    Zhu J, Ji P Y 2008 Chin. Phys. B 17 356

    [16]

    Wang Y D, Zheng W, Sun S M, Li L 2014 Aerosp. Sci. Technol. 36 27

    [17]

    Zhang H, Xu L P, Song S B, Jiao R 2014 Acta Astronautica 98 189

    [18]

    Fu L Z, Shuang P, Xue M F, Sun H F, Fang H Y 2015 China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III Beijing, China, May 13-15, 2015 p635

    [19]

    Hu H J 2012 Ph. D. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences) (in Chinese) [胡慧君 2012 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)]

    [20]

    Su Z 2011 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese) [苏哲 2011 博士学位论文 (西安: 西安电子科技大学)]

    [21]

    Bei X M, Shuai P, Huang L W, Sun H F, Wu Y J, Zhang Q 2014 Acta Phys. Sin. 63 219701 (in Chinese) [贝晓敏, 帅平, 黄良伟, 孙海峰, 吴耀军, 张倩 2014 物理学报 63 219701]

    [22]

    Landau L D, Lifshitz E M 1968 Statistical Physics (Part1) (New York: Pergamon) pp 132-140

    [23]

    Emadzadeh A A 2009 Ph. D. Dissertation (USA: University of California Los Angeles)

    [24]

    Huang L W, Liang B, Zhang T 2013 Science in China Series G: Physics, Mechanics & Astronomy 56 848

    [25]

    Rots A H, Jahoda K, Lyne A G 2004 Astrophys. J. 605 L129

    [26]

    Jain C, Paul B 2011 Res. Astron. Astrophys. 11 1134

    [27]

    Taylor J H 1992 Philos. T. R. Soc. A 341 117

    [28]

    Kaiper L, Hermsen W, Walter R, Foschini L 2006 Astron. Astrophys. 411 L31

    [29]

    Lyne A G, Smith F G 1998 Pulsar Astronomy (Cambridge: Cambridge Univ. Press) p34

    [30]

    Deng Y L, Liang Z S 1998 Stochastic Point Process and Its Application (Beijing: Science Press) pp100-106 (in Chinese) [邓永录, 梁之舜 1998 随机点过程及其应用 (北京: 科学出版社) 第100–106页]

  • [1]

    Shuai P, Li M, Chen S L, Huang Z 2009 Principles and Techniques of X-ray Pulsar Based Navigation System (Beijing: China Astronauic Publishing House) p15 (in Chinese) [帅平, 李明, 陈绍龙, 黄震 2009 X射线脉冲星导航系统原理与方法 (北京: 中国宇航出版社) 第15页]

    [2]

    Sheikh S I 2005 Ph. D. Dissertation (Maryland: University of Maryland)

    [3]

    Hanson J E 1996 Ph. D. Dissertation (USA: Stanford University)

    [4]

    Emadzadeh A A, Speyer J L 2010 IEEE Trans. Sig. Proc. 58 4484

    [5]

    Emadzadeh A A, Speyer J L 2011 Navigation in space by X-ray pulsars (Berlin: Springer) pp24-26

    [6]

    Sala J, Urruela A, Villares X 2004 ARIADNA Study 03 4202

    [7]

    Bernhardt M G, Prinz T, Becker W, Walter U 2010 Proceedings of High Time Resolution Astrophysics IV The Era of Extremely Large Telescopes-HTRA-IV Agios Nikolaos, Crete, Greece, May 5-7, 2010 p1

    [8]

    Bernhardt M G, Becker W, Prinz T, Breithuth F M, Walter U 2011 Proceedings of 2 nd International Conference on Space TechnologyAthens, Greece, September 15-17, 2011 p1

    [9]

    Becker W 2009 X-ray emission from pulsars and neutron stars, in neutron stars and pulsars (Berlin: Springer) pp91-95

    [10]

    Sun H F, Bao W M, Fang H Y, Li X P 2014 Acta Phys. Sin. 63 069701 (in Chinese) [孙海峰, 包为民, 方海燕, 李小平 2014 物理学报 63 069701]

    [11]

    Huang L W, Liang B, Zhang T, Zhang C H 2012 Science in China Series G: Physics, Mechanics & Astronomy 55 527

    [12]

    Ge M Y 2012 Ph. D. Dissertation (Beijing: Institute of High Energy Physics, Chinese Academy of Sciences) (in Chinese) [葛明玉 2012 博士学位论文 (北京: 中国科学院高能物理研究所)]

    [13]

    Sun H F, Xie K, Li X P, Fang H Y, Liu X P, Fu L Z, Sun H J, Xue M F 2013 Acta Phys. Sin. 62 109701 (in Chinese) [孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡 2013 物理学报 62 109701]

    [14]

    Li J X, Ke X Z 2009 Sci. Sin. G: Pysica, Mechanica & Astronomica 39 311 (in Chinese) [李建勋, 柯熙政 2009 中国科学 G 辑: 物理学, 力学, 天文学 39 311]

    [15]

    Zhu J, Ji P Y 2008 Chin. Phys. B 17 356

    [16]

    Wang Y D, Zheng W, Sun S M, Li L 2014 Aerosp. Sci. Technol. 36 27

    [17]

    Zhang H, Xu L P, Song S B, Jiao R 2014 Acta Astronautica 98 189

    [18]

    Fu L Z, Shuang P, Xue M F, Sun H F, Fang H Y 2015 China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III Beijing, China, May 13-15, 2015 p635

    [19]

    Hu H J 2012 Ph. D. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences) (in Chinese) [胡慧君 2012 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)]

    [20]

    Su Z 2011 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese) [苏哲 2011 博士学位论文 (西安: 西安电子科技大学)]

    [21]

    Bei X M, Shuai P, Huang L W, Sun H F, Wu Y J, Zhang Q 2014 Acta Phys. Sin. 63 219701 (in Chinese) [贝晓敏, 帅平, 黄良伟, 孙海峰, 吴耀军, 张倩 2014 物理学报 63 219701]

    [22]

    Landau L D, Lifshitz E M 1968 Statistical Physics (Part1) (New York: Pergamon) pp 132-140

    [23]

    Emadzadeh A A 2009 Ph. D. Dissertation (USA: University of California Los Angeles)

    [24]

    Huang L W, Liang B, Zhang T 2013 Science in China Series G: Physics, Mechanics & Astronomy 56 848

    [25]

    Rots A H, Jahoda K, Lyne A G 2004 Astrophys. J. 605 L129

    [26]

    Jain C, Paul B 2011 Res. Astron. Astrophys. 11 1134

    [27]

    Taylor J H 1992 Philos. T. R. Soc. A 341 117

    [28]

    Kaiper L, Hermsen W, Walter R, Foschini L 2006 Astron. Astrophys. 411 L31

    [29]

    Lyne A G, Smith F G 1998 Pulsar Astronomy (Cambridge: Cambridge Univ. Press) p34

    [30]

    Deng Y L, Liang Z S 1998 Stochastic Point Process and Its Application (Beijing: Science Press) pp100-106 (in Chinese) [邓永录, 梁之舜 1998 随机点过程及其应用 (北京: 科学出版社) 第100–106页]

  • [1] 苏剑宇, 方海燕, 包为民, 孙海峰, 赵良. 航天器处X射线脉冲星观测信号模拟方法. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221097
    [2] 徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮. X射线脉冲星导航动态模拟实验系统研制与性能测试. 物理学报, 2017, 66(5): 059701. doi: 10.7498/aps.66.059701
    [3] 代锦飞, 赵宝升, 盛立志, 周雁楠, 陈琛, 宋娟, 刘永安, 李林森. 标定脉冲星导航探测器的荧光X射线光源. 物理学报, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [4] 盛立志, 赵宝升, 吴建军, 周峰, 宋娟, 刘永安, 申景诗, 鄢秋荣, 邓宁勤, 胡慧君. X射线脉冲星导航系统模拟光源的研究. 物理学报, 2013, 62(12): 129702. doi: 10.7498/aps.62.129702
    [5] 周峰, 吴光敏, 赵宝升, 盛立志, 宋娟, 刘永安, 鄢秋荣, 邓宁勤, 赵建军. 基于X射线脉冲星导航的模拟调制仿真源研究. 物理学报, 2013, 62(11): 119701. doi: 10.7498/aps.62.119701
    [6] 周庆勇, 姬剑锋, 任红飞. X射线脉冲星自主导航的观测方程. 物理学报, 2013, 62(13): 139701. doi: 10.7498/aps.62.139701
    [7] 孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡. 高稳定度X射线脉冲星信号模拟. 物理学报, 2013, 62(10): 109701. doi: 10.7498/aps.62.109701
    [8] 王朋, 赵宝升, 盛立志, 胡慧君, 鄢秋荣. X射线脉冲星导航系统导航精度的研究. 物理学报, 2012, 61(20): 209702. doi: 10.7498/aps.61.209702
    [9] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [10] 苏哲, 许录平, 王婷. X射线脉冲星导航半物理仿真实验系统研究. 物理学报, 2011, 60(11): 119701. doi: 10.7498/aps.60.119701
    [11] 胡慧君, 赵宝升, 盛立志, 鄢秋荣. 基于X射线脉冲星导航的地面模拟系统研究. 物理学报, 2011, 60(2): 029701. doi: 10.7498/aps.60.029701
    [12] 门福殿, 何晓刚, 周勇, 宋新祥. 强磁场中超冷费米气体的相对论效应. 物理学报, 2011, 60(10): 100502. doi: 10.7498/aps.60.100502
    [13] 刘昆, 宁传刚, 石砳磊, 苗雨润, 邓景康. 探测二茂铁外价轨道(e,2e)反应中的扭曲波效应. 物理学报, 2011, 60(2): 023402. doi: 10.7498/aps.60.023402
    [14] 范召兰, 门福殿, 窦瑞波. 硬球势中相对论费米气体的热力学性质. 物理学报, 2010, 59(6): 3715-3719. doi: 10.7498/aps.59.3715
    [15] 郑曙东, 李博文, 李冀光, 董晨钟, 袁文渊. 原子核的有限体积效应对高离化态离子能级和波函数的影响. 物理学报, 2009, 58(3): 1556-1562. doi: 10.7498/aps.58.1556
    [16] 何彪, 易有根, 江少恩, 唐永建, 郑志坚. 电子碰撞Ga, As, Pt, W和Au原子Lα X射线产生截面的理论计算. 物理学报, 2009, 58(10): 6879-6883. doi: 10.7498/aps.58.6879
    [17] 徐 慧, 盛政明, 张 杰. 相对论效应对大振幅电子等离子体振荡破裂影响的数值模拟. 物理学报, 2007, 56(2): 968-976. doi: 10.7498/aps.56.968
    [18] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [19] 王伟民, 郑春阳. 超强短脉冲激光在不同密度分布等离子体中的自聚焦. 物理学报, 2006, 55(1): 310-320. doi: 10.7498/aps.55.310
    [20] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
计量
  • 文章访问数:  3005
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-24
  • 修回日期:  2015-06-27
  • 刊出日期:  2015-11-05

一种新的X射线脉冲星信号模拟方法

  • 1. 西安电子科技大学空间科学与技术学院, 西安 710126
  • 通信作者: 薛梦凡, xuemfxd@126.com

摘要: 由于无法在地面直接观测到X射线脉冲星信号, 且空间飞行探测耗时长, 成本高, 模拟具有真实物理特征的X射线脉冲星信号对X射线脉冲星信号处理方法及导航方案的验证具有重要意义. 本文提出了一种利用太阳系质心处脉冲星信号模型和航天器轨道信息, 建立航天器处实时光子到达速率函数, 再利用尺度变换法产生光子到达时间序列的脉冲星信号模拟新方法. 该方法真实还原了脉冲星信号的频率缓变特性, 考虑了动态探测环境下的相对论效应, 且避免了现有模拟航天器处光子序列方法中的迭代过程, 产生非齐次泊松光子到达时间序列的运算量也低于常用的齐次泊松过程筛选法和反函数递推法. 数值仿真从频率特性、流量特性、轮廓相似度及与实测数据的接近程度四个方面验证了该模拟方法的正确性.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回