-
运用第一性原理的局域密度近似+U(0 U9 eV)方法研究了本征金红石相TiO2在不同U值(对Ti-3d电子)下的禁带宽度、晶体结构以及不同比例C元素掺杂的金红石相TiO2的电子结构和光学性质, 研究表明, TiO2的禁带宽度和晶格常数随着U值的增加而增大. 综合考虑取U=3 eV并对其计算结果进行修正. 对于掺杂体系, 发现C 元素的掺杂在金红石相TiO2中引入杂质能级, 杂质能级主要由O-2p轨道和C-2p轨道耦合形成, 杂质能级的引入可以增加TiO2对可见光的响应, 从而使TiO2的吸收范围增大. C原子掺杂最佳比例为8.3%, 此时光学吸收边的红移程度最明显, 可增大光吸收效率, 从而提高了TiO2光催化效率.The lattice parameters and band-gap of native rutile TiO2 are investigated by the first-principles calculations of local density approximation+U method with different U values for Ti-3d (0 U 9 eV). The electronic structures and optical properties of different content C doped rutile TiO2 systems are also studied by the same method with appropriate U values. The calculations results show that the lattice parameters and band-gaps of TiO2 increase with the increase of U and the U =3 eV is fitted for the corrected band-gap. For the doped systems, the impurity energy level is introduced due to the coupling between O-2p and C-2p, which can increase the TiO2 absorption edge to the visible region, and therefore enlarge the absorption region of TiO2. Moreover, the 8.3% C is an optimal doped density, which can lead to the red-shift of optical absorption edge obviously and increase the coefficient of light absorption, therefore facilitate the enhancement of the photocatalytic efficiency.
-
Keywords:
- first-principles /
- TiO2 /
- C doped /
- optical properties
[1] Grant F A 1959 Rev. Mod. Phys. 31 646
[2] Wang P, Gratzel M 2003 Nat. Mater. 21 402
[3] Byrne J A, Eggins B R, Brown N M D 1998 Appl. Cataly. B: Environ. 17 25
[4] Kamisaka H, Adachi T, Yamashita K 2005 J. Chem. Phys. 123 84704
[5] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]
[6] Li Q K, Wang B, Wang Q, Wang R 2007 J. Heilongjiang Univ. (Nat. Sci.) 24 455 (in Chinese) [李青坤, 王彪, 王强, 王锐 2007 黑龙江大学自然科学学报 24 455]
[7] Ohno T, Mitsui T, Matsumura M 2003 Chem. Lett. 32 364
[8] Fujishima A, Honda K 1972 Nature 238 37
[9] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269
[10] Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454
[11] Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243
[12] Sakthivel S, Kisch H 2003 Angew. Chem. Int. Ed. 42 4908
[13] Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 32 772
[14] Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 物理学报 59 4930]
[15] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]
[16] Lu J B, Dai Y, Guo M, Yu L, Lai K R, Huang B B 2012 Appl. Phys. Lett. 100 102114
[17] Yang K S, Dai Y Huang B B, Whangbo M H 2009 J. Phys. Chem. C 113 2624
[18] Gu D E, Lu Y, Yang B C, Hu Y D 2008 Chem. Commun. 2008 2453
[19] Perdew J P, Wang Y. 1992 Phys. Rev. B 45 13244
[20] Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748
[21] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[22] Zhou S, Xu Q, Potzger K, Talut G, Grtzsche R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M, Schmidt H 2008 Appl. Phys. Lett. 93 232507
[23] Arroyo-de Dompablo M E, Morales-Garca A, Taravillo M 2011 J. Chem. Phys. 135 054503
[24] Wang G X 1986 Atomic Orbital and Molecular Orbital (Beijing: Higher Education Press) pp168-192 (in Chinese) [王国雄 1986原子轨道与分子轨道 (北京: 高等教育出版社) 第168192页]
[25] Schubert E F, Proetto C R, Ploog K H 1995 Delta-doping of Semiconductors (Cambridge: Cambridge University Press) pp1-601
-
[1] Grant F A 1959 Rev. Mod. Phys. 31 646
[2] Wang P, Gratzel M 2003 Nat. Mater. 21 402
[3] Byrne J A, Eggins B R, Brown N M D 1998 Appl. Cataly. B: Environ. 17 25
[4] Kamisaka H, Adachi T, Yamashita K 2005 J. Chem. Phys. 123 84704
[5] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]
[6] Li Q K, Wang B, Wang Q, Wang R 2007 J. Heilongjiang Univ. (Nat. Sci.) 24 455 (in Chinese) [李青坤, 王彪, 王强, 王锐 2007 黑龙江大学自然科学学报 24 455]
[7] Ohno T, Mitsui T, Matsumura M 2003 Chem. Lett. 32 364
[8] Fujishima A, Honda K 1972 Nature 238 37
[9] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269
[10] Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454
[11] Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243
[12] Sakthivel S, Kisch H 2003 Angew. Chem. Int. Ed. 42 4908
[13] Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 32 772
[14] Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 物理学报 59 4930]
[15] Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]
[16] Lu J B, Dai Y, Guo M, Yu L, Lai K R, Huang B B 2012 Appl. Phys. Lett. 100 102114
[17] Yang K S, Dai Y Huang B B, Whangbo M H 2009 J. Phys. Chem. C 113 2624
[18] Gu D E, Lu Y, Yang B C, Hu Y D 2008 Chem. Commun. 2008 2453
[19] Perdew J P, Wang Y. 1992 Phys. Rev. B 45 13244
[20] Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748
[21] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[22] Zhou S, Xu Q, Potzger K, Talut G, Grtzsche R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M, Schmidt H 2008 Appl. Phys. Lett. 93 232507
[23] Arroyo-de Dompablo M E, Morales-Garca A, Taravillo M 2011 J. Chem. Phys. 135 054503
[24] Wang G X 1986 Atomic Orbital and Molecular Orbital (Beijing: Higher Education Press) pp168-192 (in Chinese) [王国雄 1986原子轨道与分子轨道 (北京: 高等教育出版社) 第168192页]
[25] Schubert E F, Proetto C R, Ploog K H 1995 Delta-doping of Semiconductors (Cambridge: Cambridge University Press) pp1-601
计量
- 文章访问数: 6905
- PDF下载量: 269
- 被引次数: 0