-
在飞秒激光激励下用GaAs光电导开关作为太赫兹(THz)辐射天线, 已经广泛用于太赫兹时域光谱系统, 但目前国际上都是使用GaAs光电导开关的线性工作模式, 而GaAs光电导开关的雪崩倍增工作模式所输出的超快电脉冲功率容量远大于其线性工作模式, 迄今为止, 还没有人提出用雪崩倍增机理的GaAs 光电导开关作为辐射源产生THz电磁辐射. 本文探讨了用 雪崩倍增工作模式的GaAs光电导开关作为光电导天线产生THz电磁波的可能性及研究进展. 通过理论分析及实验研究, 在实验上实现了: 1) 利用nJ量级飞秒激光触发GaAs光电导天线, 可以进入雪崩倍增工作模式; 2) 利用光激发电荷畴的猝灭模式, 可以使GaAs光电导天线载流子雪崩倍增模式的延续时间(lock-on 时间)变短. 这为利用具有雪崩倍增机理的GaAs光电导天线产生强THz辐射奠定了基础.GaAs photoconductive switch illuminated by a femto-second laser has been widely used in a terabertz (THz) time domain spectroscopy system as a THz wave emission antenna. Now, all of the GaAs photoconductive switches are used in linear mode. However, when the GaAs photoconductive switch operates in an avalanche multiplication mode, the power capacity of output ultrafast electric pulse is much higher than that in a linear mode. So far, nobody has proposed the idea of generating THz waves by using the GaAs photoconductive switches in the avalanche multiplication mode. In this paper, we report the feasibility and research progress of using the GaAs photoconductive switches in the avalanche multiplication mode as the THz sources. By theoretical analysis and experimental research, some results are obtained experimentally as follows. 1) The GaAs photoconductive antenna can operate in an avalanche multiplication mode when illuminated by a femto-second laser pulse with an energy on the order of nJ. 2) The maintaining time of the avalanche multiplication mode, i.e, lock-on period, can be reduced by the quenching mode of photo-activated charge domain. These results lay the foundation for generating the high intensity THz emission by the GaAs photoconductive antenna with the avalanche multiplication mechanism.
-
Keywords:
- GaAs photoconductive switch /
- photoconductive antenna /
- photo-activated charge domain /
- avalanche multiplication
[1] Takano K, Chiyoda Y, Nishida T, Miyamaru F, Kawabata T, Sasaki H, Takeda M W, Hangyo M 2011 Appl. Phys. Lett. 99 161114
[2] Krause J, Wagner M, Winnerl S, Helm M, Stehr D 2011 Opt. Express 19 19114
[3] Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111
[4] Rihani S, Faulks R, Beere H, Page H, Gregory I, Evans M, Ritchie D A, Peppe M 2009 Appl. Phys. Lett. 95 051106
[5] Gao Y H, Chen M K, Yin S, Ruffin P, Brantley C, Edwards E 2011 J. Appl. Phys. 109 033108
[6] Miyamaru F, Saito Y, Yamamoto K, Furuya T, Nishizawa S, Tani M 2010 Appl. Phys. Lett. 96 211104
[7] Lu L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504
[8] Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702
[9] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S, Wu D M 2012 Chin. Phys. B 21 108504
[10] Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T, Helgeson W D, Brown D J 1997 IEEE Trans. Plasma Sci. 25 124
[11] Jerry L H, Bailey D W, Dougal R A, Venkatesan V 1995 IEEE Trans. Power Electron. 10 615
[12] Shi W, Zhao W, Zhang X B, Li E L 2002 Acta Phys. Sin. 51 867 (in Chinese) [施卫, 赵卫, 张显斌, 李恩玲 2002 物理学报 51 867]
[13] Islam N E, Schamiloglu E, Fleddermann C B 1998 Appl. Phys. Lett. 73 1988
[14] Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110
[15] Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z, Zhou L J, Liu H W, Xie W P 2008 Appl. Phys. Lett. 92 043511
[16] Shi W, Liang Z X 1999 Chin. J. Semicond. 21 53 (in Chinese) [施卫, 梁振宪 1999 半导体学报 21 53]
[17] Shi W 2001 Chin. J. Semicond. 22 1481
[18] Shi W, Chen E Z, Zhang X B, Li Q 2002 Chin. Phys. Lett. 19 1119
[19] Shi W, Tian L 2006 Appl. Phys. Lett. 89 202103
[20] Shi W, Dai H Y, Sun X W 2003 Chin. Opt. Lett. 1 553
[21] Tian L Q, Shi W 2008 J. Semicond. 29 1913
[22] Faulks R, Rihani S, Beere H E, Evans M J, Ritchie D A, Pepper M 2010 Appl. Phys. Lett. 96 081106
[23] Shi W, Zhang Z Z, Hou L 2010 Chin. Phys. Lett. 27 087203
[24] Diao J M, Du L, Ouyang J, Yang P, Nie Z P 2011 J. Electromagn. Waves Appl. 25 2236
[25] Ma Z, Ma H M, Yang C T, Feng K M 2011 J. Syst. Eng. Electron. 22 373
[26] Loubriel G M, Helgeson W D, McLaughlin D L, O'Malley M W, Zutavern F J, Rosen A, Stabile P J 1991 IEEE Trans. Electron Dev. 38 692
-
[1] Takano K, Chiyoda Y, Nishida T, Miyamaru F, Kawabata T, Sasaki H, Takeda M W, Hangyo M 2011 Appl. Phys. Lett. 99 161114
[2] Krause J, Wagner M, Winnerl S, Helm M, Stehr D 2011 Opt. Express 19 19114
[3] Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111
[4] Rihani S, Faulks R, Beere H, Page H, Gregory I, Evans M, Ritchie D A, Peppe M 2009 Appl. Phys. Lett. 95 051106
[5] Gao Y H, Chen M K, Yin S, Ruffin P, Brantley C, Edwards E 2011 J. Appl. Phys. 109 033108
[6] Miyamaru F, Saito Y, Yamamoto K, Furuya T, Nishizawa S, Tani M 2010 Appl. Phys. Lett. 96 211104
[7] Lu L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504
[8] Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702
[9] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S, Wu D M 2012 Chin. Phys. B 21 108504
[10] Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T, Helgeson W D, Brown D J 1997 IEEE Trans. Plasma Sci. 25 124
[11] Jerry L H, Bailey D W, Dougal R A, Venkatesan V 1995 IEEE Trans. Power Electron. 10 615
[12] Shi W, Zhao W, Zhang X B, Li E L 2002 Acta Phys. Sin. 51 867 (in Chinese) [施卫, 赵卫, 张显斌, 李恩玲 2002 物理学报 51 867]
[13] Islam N E, Schamiloglu E, Fleddermann C B 1998 Appl. Phys. Lett. 73 1988
[14] Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110
[15] Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z, Zhou L J, Liu H W, Xie W P 2008 Appl. Phys. Lett. 92 043511
[16] Shi W, Liang Z X 1999 Chin. J. Semicond. 21 53 (in Chinese) [施卫, 梁振宪 1999 半导体学报 21 53]
[17] Shi W 2001 Chin. J. Semicond. 22 1481
[18] Shi W, Chen E Z, Zhang X B, Li Q 2002 Chin. Phys. Lett. 19 1119
[19] Shi W, Tian L 2006 Appl. Phys. Lett. 89 202103
[20] Shi W, Dai H Y, Sun X W 2003 Chin. Opt. Lett. 1 553
[21] Tian L Q, Shi W 2008 J. Semicond. 29 1913
[22] Faulks R, Rihani S, Beere H E, Evans M J, Ritchie D A, Pepper M 2010 Appl. Phys. Lett. 96 081106
[23] Shi W, Zhang Z Z, Hou L 2010 Chin. Phys. Lett. 27 087203
[24] Diao J M, Du L, Ouyang J, Yang P, Nie Z P 2011 J. Electromagn. Waves Appl. 25 2236
[25] Ma Z, Ma H M, Yang C T, Feng K M 2011 J. Syst. Eng. Electron. 22 373
[26] Loubriel G M, Helgeson W D, McLaughlin D L, O'Malley M W, Zutavern F J, Rosen A, Stabile P J 1991 IEEE Trans. Electron Dev. 38 692
计量
- 文章访问数: 7201
- PDF下载量: 343
- 被引次数: 0