搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究

金国梁 尹剑飞 温激鸿 温熙森

引用本文:
Citation:

基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究

金国梁, 尹剑飞, 温激鸿, 温熙森

Investigation of underwater sound scattering on a cylindrical shell coated with anechoic coatings by the finite element method based on an equivalent parameter inversion

Jin Guo-Liang, Yin Jian-Fei, Wen Ji-Hong, Wen Xi-Sen
PDF
导出引用
  • 应用了一种等效方法计算敷设声学覆盖层无限长圆柱壳体水下声散射特性. 等效方法的核心是忽略复杂声学覆盖层内部的声学结构, 将其作为具有等效材料参数的均匀阻尼层进行建模, 该均匀阻尼层具有和原覆盖层相同的复反射系数. 进而, 应用COMSOL Mutiphysics软件建立敷设均匀阻尼层圆柱壳体的有限元模型并求解其声散射特性. 等效方法的关键是等效材料参数的获取. 采用充水阻抗管实验和有限元数值实验两种方法获取声学覆盖层贴敷在与壳体具有相同厚度、相同材料背衬条件下的复反射系数, 在此基础上, 基于遗传算法反演材料的等效参数. 研究表明, 等效参数具有频变特性, 且尽管等效杨氏模量和等效泊松比在频率范围内存在较大波动, 但是等效前后复反射系数仍保持一致. 为了验证等效方法求解壳体声散射特性的准确性, 同时建立了敷设声学覆盖层壳体的完整有限元模型, 将覆盖层内部声学结构进行精细建模, 并求其声散射特性. 结果表明, 两种方法求得的形态函数符合得较好, 在整个频率范围内平均误差大约为1 dB.
    Anechoic coating attached to the surface of an underwater object is used for absorbing sound wave thereby reducing the reflection. The anechoic coating is often made of viscoelastic materials embedded with designed acoustic substructures, such as air cavities. The prediction of sound scattering on underwater object coated with such materials can be challenging due to the complex geometry of the anechoic coating, and it has been a research subject of interest in underwater acoustics. In this paper, we study the sound scattering on an infinite cylindrical shell coated with anechoic coating. Two types of coatings are considered: one is a layer of homogeneous isotropic material, and the other is a layer of homogeneous isotropic material with periodically embedded cylindrical air cavities. We use an equivalent method, in which the anechoic coating with air-filled cavities is regarded as a homogeneous isotropic material with equivalent material properties. The key point of the equivalent method is to ignore the internal structure of the anechoic coating, and the anechoic coating is considered as a homogeneous isotropic layer with the same complex reflection coefficient. These equivalent material properties are acquired based on the data of complex reflection coefficient obtained from either the physical experiment using water-filled impedance tube or the numerical experiment using the finite element method with COMSOL Mutiphysics software. Then a genetic algorithm is developed to inversely calculate the equivalent Young's modulus, Poisson's ratio, and damping loss factor of the coating which has the same reflection coefficient as the original coating. The results of the equivalent material properties show that 1) the three properties are all frequency dependent; 2) in general, equivalent Young's modulus increases with the increase of frequency, meanwhile the equivalent damping loss factor tends to decrease; 3) there is a wide variation in the results of equivalent Poisson's ratio. Despite that, the reflection coefficient of the equivalent homogeneous isotropic coating accords well with that of the original coating.Based on the above, the sound scattering on the infinite cylindrical shell coated with the equivalent coating is calculated by using the finite element method based on COMSOL Mutiphysics software. In order to verify the accuracy of the equivalent model, we use COMSOL Mutiphysics software to build up the full geometrical model of the coated shell to calculate the sound scattering. This can be considered as the benchmark. The results of morphic function show that the scattering calculated using equivalent material properties accords well with that obtained from the full finite element model with a mean error of about 1 dB in all frequency spectrum range.
      通信作者: 温激鸿, wenjihong@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号: 51275519)资助的课题.
      Corresponding author: Wen Ji-Hong, wenjihong@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275519).
    [1]

    Yang H B, Li Y, Zhao H G, Wen J H, Wen X S 2014 Chin Phys. B 23 104304

    [2]

    Zhao H G, Wen J H, Yang H B, L L M, Wen X S 2014 Appl. Acoust. 63 134303 (in Chinese) [赵宏刚, 温激鸿, 杨海滨, 吕林梅, 温熙森 2014 应用声学 63 134303]

    [3]

    Zhao H G, Liu Y Z, Wen J H, Yu D L, Wen X S 2007 Acta Phys. Sin. 56 4700 (in Chinese) [赵宏刚, 刘耀宗, 温激鸿, 郁殿龙, 温熙森 2007 物理学报 56 4700]

    [4]

    Gaunaurd G C, Werby M F 1990 Appl. Mech. Rev. 43 171

    [5]

    Tang W L, Fan J 1999 Acta Acoust. 24 174 (in Chinese) [汤渭霖, 范军 1999 声学学报 24 174]

    [6]

    Xu H L, Chen L J 2007 Acoust. Electron. Eng. 4 9 (in Chinese) [徐红兰, 陈励军 2007 声学与电子工程 4 9]

    [7]

    Huang W, Wang Y J, Rokhlin S I 1996 J. Acoust. Soc. Am. 99 2742

    [8]

    Zhu B L, Ren K M 1997 J. Shanghai Jiaotong Univ. 31 20 (in Chinese) [朱蓓丽, 任克明 1997 上海交通大学学报 31 20]

    [9]

    Fan J 2001 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [范军 2001 博士学位论文 (上海: 上海交通大学)]

    [10]

    Brekhovskikh L M (translated by Yang X R) 1960 Waves in Layered Media (Beijing: Science Press) p5 (in Chinese) [布列霍夫斯基赫 著(杨训仁 译) 1960 分层介质中的波(北京: 科学出版社)第5页]

    [11]

    Chen G L, Wang X F 1996 Genetic Algorithms and Application (Beijing: Posts and Telecom Press) p3 (in Chinese) [陈国良, 王熙法 1996 遗传算法及其应用(北京: 人民邮电出版社)第3页]

    [12]

    Zhou M, Sun S D 1999 Genetic Algorithms: Theory and Application (Beijing: National Defense Industry Press) p12 (in Chinese) [周明, 孙树栋 1999 遗传算法原理及应用(北京: 国防工业出版社)第12页]

    [13]

    Lei Y J, Zhang S W, Li X W 2005 MATLAB Genetic Algorithms Tool Box and Applications (Xi'an: University of Electronic Science and Technology of Xi'an) p57 (in Chinese) [雷英杰, 张善文,李续武 2005 MATLAB遗传算法工具箱及应用 (西安: 电子科大出版社)第57页]

    [14]

    Zhu B L, Huang X C 2012 Key Technique of Invisible SubmarineDesign of Acoustic Coating (Shanghai: Shanghai Jiaotong University Press) p116 (in Chinese) [朱蓓丽, 黄修长 2012 潜艇隐身关键技术声学覆盖层的设计 (上海: 上海交通大学出版社)第116页]

  • [1]

    Yang H B, Li Y, Zhao H G, Wen J H, Wen X S 2014 Chin Phys. B 23 104304

    [2]

    Zhao H G, Wen J H, Yang H B, L L M, Wen X S 2014 Appl. Acoust. 63 134303 (in Chinese) [赵宏刚, 温激鸿, 杨海滨, 吕林梅, 温熙森 2014 应用声学 63 134303]

    [3]

    Zhao H G, Liu Y Z, Wen J H, Yu D L, Wen X S 2007 Acta Phys. Sin. 56 4700 (in Chinese) [赵宏刚, 刘耀宗, 温激鸿, 郁殿龙, 温熙森 2007 物理学报 56 4700]

    [4]

    Gaunaurd G C, Werby M F 1990 Appl. Mech. Rev. 43 171

    [5]

    Tang W L, Fan J 1999 Acta Acoust. 24 174 (in Chinese) [汤渭霖, 范军 1999 声学学报 24 174]

    [6]

    Xu H L, Chen L J 2007 Acoust. Electron. Eng. 4 9 (in Chinese) [徐红兰, 陈励军 2007 声学与电子工程 4 9]

    [7]

    Huang W, Wang Y J, Rokhlin S I 1996 J. Acoust. Soc. Am. 99 2742

    [8]

    Zhu B L, Ren K M 1997 J. Shanghai Jiaotong Univ. 31 20 (in Chinese) [朱蓓丽, 任克明 1997 上海交通大学学报 31 20]

    [9]

    Fan J 2001 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [范军 2001 博士学位论文 (上海: 上海交通大学)]

    [10]

    Brekhovskikh L M (translated by Yang X R) 1960 Waves in Layered Media (Beijing: Science Press) p5 (in Chinese) [布列霍夫斯基赫 著(杨训仁 译) 1960 分层介质中的波(北京: 科学出版社)第5页]

    [11]

    Chen G L, Wang X F 1996 Genetic Algorithms and Application (Beijing: Posts and Telecom Press) p3 (in Chinese) [陈国良, 王熙法 1996 遗传算法及其应用(北京: 人民邮电出版社)第3页]

    [12]

    Zhou M, Sun S D 1999 Genetic Algorithms: Theory and Application (Beijing: National Defense Industry Press) p12 (in Chinese) [周明, 孙树栋 1999 遗传算法原理及应用(北京: 国防工业出版社)第12页]

    [13]

    Lei Y J, Zhang S W, Li X W 2005 MATLAB Genetic Algorithms Tool Box and Applications (Xi'an: University of Electronic Science and Technology of Xi'an) p57 (in Chinese) [雷英杰, 张善文,李续武 2005 MATLAB遗传算法工具箱及应用 (西安: 电子科大出版社)第57页]

    [14]

    Zhu B L, Huang X C 2012 Key Technique of Invisible SubmarineDesign of Acoustic Coating (Shanghai: Shanghai Jiaotong University Press) p116 (in Chinese) [朱蓓丽, 黄修长 2012 潜艇隐身关键技术声学覆盖层的设计 (上海: 上海交通大学出版社)第116页]

  • [1] 刘昱, 贺西平, 贺升平. 多晶材料散射模型及识别实验研究. 物理学报, 2024, 73(3): 034302. doi: 10.7498/aps.73.20231578
    [2] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] 牟春晖, 陈娟, 范凯航, 鲁艺. 适用于一维精细结构电磁目标模拟的通用HIE-FDTD方法及程序实现. 物理学报, 2022, 71(18): 184101. doi: 10.7498/aps.71.20220695
    [4] 周彦玲, 范军, 王斌, 李兵. 水下环形凹槽圆柱体散射声场空间指向性调控. 物理学报, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [5] 马瑞轩, 王益民, 张树海, 武从海, 王勋年. 旋涡声散射特性的尺度效应数值研究. 物理学报, 2021, 70(10): 104301. doi: 10.7498/aps.70.20202206
    [6] 王益民, 马瑞轩, 武从海, 罗勇, 张树海. 旋涡声散射的空间尺度特性数值研究. 物理学报, 2021, 70(19): 194302. doi: 10.7498/aps.70.20202232
    [7] 冯康艺, 王成会. 超声场中空化泡对弹性粒子微流的影响. 物理学报, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [8] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演. 物理学报, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [9] 范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东. 基于声散射的水下气泡群空间关联性研究. 物理学报, 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [10] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究. 物理学报, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [11] 丁敏, 薛晖, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良. 基于电磁超材料的两种等效参数提取算法的比较分析. 物理学报, 2013, 62(4): 044218. doi: 10.7498/aps.62.044218
    [12] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [13] 吴海军, 蒋伟康, 鲁文波. 三维声学多层快速多极子边界元及其应用. 物理学报, 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [14] 吕林梅, 温激鸿, 赵宏刚, 孟浩, 温熙森. 内嵌不同形状散射子的局域共振型黏弹性覆盖层低频吸声性能研究. 物理学报, 2012, 61(21): 214302. doi: 10.7498/aps.61.214302
    [15] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [16] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [17] 徐世珍, 贾天卿, 孙海轶, 李晓溪, 程兆谷, 冯东海, 李成斌, 徐至展. 飞秒激光在石英玻璃中诱导微爆炸的理论研究. 物理学报, 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
    [18] 尤云祥, 缪国平. 阻抗障碍物声散射的反问题. 物理学报, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [19] 尤云祥, 缪国平. 三维可穿透目标远场声波反演的一种指示器样本方法. 物理学报, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [20] 尤云祥, 缪国平, 刘应中. 用近场声学测量信息可视化多个三维障碍物的一种快速算法. 物理学报, 2001, 50(6): 1103-1109. doi: 10.7498/aps.50.1103
计量
  • 文章访问数:  5291
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-19
  • 修回日期:  2015-08-18
  • 刊出日期:  2016-01-05

/

返回文章
返回