搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔石英损伤修复坑下游光场调制的数值模拟与实验研究

白阳 张丽娟 廖威 周海 张传超 陈静 叶亚云 蒋一岚 王海军 栾晓雨 袁晓东 郑万国

引用本文:
Citation:

熔石英损伤修复坑下游光场调制的数值模拟与实验研究

白阳, 张丽娟, 廖威, 周海, 张传超, 陈静, 叶亚云, 蒋一岚, 王海军, 栾晓雨, 袁晓东, 郑万国

Study of downstream light intensity modulation induced by mitigated damage pits of fused silica using numerical simulation and experimental measurements

Bai Yang, Zhang Li-Juan, Liao Wei, Zhou Hai, Zhang Chuan-Chao, Chen Jing, Ye Ya-Yun, Jiang Yi-Lan, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Zheng Wan-Guo
PDF
导出引用
  • 系统研究了熔石英激光损伤修复后的形貌特征, 根据测量数据建立了典型的损伤修复坑三维模型, 利用标量衍射理论并结合快速傅里叶变换算法研究了修复坑在351 nm激光辐照下游光场调制的分布规律. 研究表明, 修复坑引起的光场调制会使得下游不同距离位置处出现环形光场增强区和轴上位置光场增强点; 环形光场增强区位置距离修复元件较近, 其环形调制极大值主要受修复坑深度影响, 且随修复坑深度的增大而逐渐增加; 轴上位置光场增强点位置距离修复元件较远, 其轴上调制极大值主要受修复坑边缘凸起高度的影响, 且随凸起高度的增大而快速增加; 环形调制极大值或轴上调制极大值增大的同时, 其分布位置与修复元件之间的距离均会逐渐减小. 实验验证表明, 利用三维修复坑模型得到的下游光场调制数值模拟结果与实验测量结果具有较好的一致性. 本研究结果对控制熔石英元件损伤修复形貌特征以抑制调制增强效应给出了具体的控制方向, 对修复工艺的改进与完善提供了非常有意义的参考.
    For high-power UV laser facilities, one of the key problems limiting the maximum light influence and safe routine operation is that the UV laser induces damage to fused silica optics. The most effective mitigation protocol of the damaged optics is the CO2 laser processing that leads to make locally melt or evaporate the damage. While the mitigated damage sites possess particular morphology, which may modulate the passing laser beam and induce the downstream intensification that will ruin the neighbor optics. In this work, the morphology features of the mitigated damage pits of fused silica optics are systematically investigated. According to the measured morphology features, a 3D grid model of mitigated pit is built, and the downstream light intensity distribution of the mitigated pit model under incident 351 nm laser is studied by scalar diffraction theory and fast fourier transform (FFT) methods. Results indicate that there are two kinds of downstream intensification: off-axis and on-axis intensifications. In the former intensification, the maximum intensity is located near the output surface of the optics and comes mainly from the depth of the mitigated pit; it increases with the depth. In the alter intensification, the maximum intensity is located far from the output surface of the optics and is mainly dependent on the height of the rim structure at the fringe of the mitigated damage pit; so it increase with increasing height. In addition, it is found that the location of the maximum off-axis or on-axis intensity can approach the output surface of the optics with increasing maximum intensity. For comparison, experimental measurements of downstream intensification induced by the mitigated pits are carried out, and the experimental results are almost consistent with the numerical simulation, implying the validity of the numerical simulation of the mitigated pit model. Results of this research indicate that the downstream intensification of mitigated pits can be suppressed by controlling the morphology features of mitigated pits. this is significant for the development and improvement of the mitigated techniques of damage optics.
      通信作者: 周海, a697097@163.com;zhchch@caep.cn ; 张传超, a697097@163.com;zhchch@caep.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11404301)资助的课题.
      Corresponding author: Zhou Hai, a697097@163.com;zhchch@caep.cn ; Zhang Chuan-Chao, a697097@163.com;zhchch@caep.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404301).
    [1]

    Miller G H, Moses E I, Wuest C R 2004 Opt. Eng. 43 2841

    [2]

    Andre M L 1997 Proc. SPIE 3047 38

    [3]

    Peng H S, Zhang X M, Wei X F, Zheng W G, Jing F, Sui Z, Fan D Y, Lin Z Q 1999 Proc. SPIE 3492 25

    [4]

    Bercegol H, Bouchut P, Lamaignere L, Le Garrec B, Raze G 2003 Proc. SPIE 5273 312

    [5]

    Bass I L, Draggoo V G, Guss G M, Hackel R P, Norton M A 2006 Proc. SPIE 6261 A2612

    [6]

    Campbell J H, Hawley-Fedder R A, Stolz C J, Menapace J A, Borden M R, Whitman P K, Yu J, Runkel M, Riley M O, Feit M D, Hackel R P 2004 Proc. SPIE 5341 84

    [7]

    Hrubesh L W, Norton M A, Molander W A, Donohue E E, Maricle S M, Penetrante B M, Brusasco R M, Grundler W, Butler J A, Carr J W, Hill R M, Summers L J, Feit M D, Rubenchik A, Key M H, Wegner P J, Burnham A K, Hackel L A, Kozlowski M R 2002 Proc. SPIE 4679 23

    [8]

    Liu C M, Yang L, Yan Z H, Jiang Y, Wang H J, Liao W, Xiang X, He S B, L H B, Yuan X D, Zheng W G, Zu X T 2013 Acta Phys. Sin. 62 094701 (in Chinese) [刘春明, 杨亮, 晏中华, 蒋勇, 王海军, 廖威, 向霞, 贺少勃, 吕海兵, 袁晓东, 郑万国, 祖小涛 2013 物理学报 62 094701]

    [9]

    Adams J J, Bolourchi M, Bude J D, Guss G M, Matthews M J, Nostrand M C 2010 Proc. SPIE 7842 784223

    [10]

    Brusasco R M, Penetrante B M, Butler J A, Hrubesh L W 2002 Proc. SPIE 4679 40

    [11]

    Guss G, Bassa I, Draggoo V, Hackel R, Payne S, Lancaster M, Mark P 2007 Proc. SPIE 6403 M4030

    [12]

    Runkel M, Hawley-Fedder R, Widmayer C, Williams W, Weinzapfel C, Roberts D 2005 Proc. SPIE 5991 H9912

    [13]

    Bass I L, Guss G M, Nostrand M J, Wegner P J 2010 Proc. SPIE 7842 784220

    [14]

    Feit M D, Rubenchik A M 1997 Proc. SPIE 3047 971

    [15]

    Anthony T R, Cline H E 1977 J. Appl. Phys. 48 3888

    [16]

    Matthews M J, Bass I L, Guss G M, Widmayer C C, Ravizza F L 2007 Proc. SPIE 6720 A7200

    [17]

    Jiang Y 2012 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [蒋勇 2012 博士学位论文 (成都: 电子科技大学)]

    [18]

    Cormont P, Gallais L, Lamaignere L, Rullier J L, Combis P, Hebert D 2010 Opt. Express 18 2526068

    [19]

    Bourgeade A, Donval T, Gallais L, Lamaignere L, Rullier J L 2015 J. Opt. Soc. Am. B-Optical Physics 32 655

    [20]

    Jiang Y, Liu C M, Luo C S, Yuan X D, Xiang X, Wang H J, He S B, L H B, Ren W, Zheng W G, Zu X T 2012 Chin. Phys. B 21 054216

    [21]

    Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, L H B, Zheng W G, Zu X T 2012 Chin. Phys. B 21 064219

    [22]

    Zhang C L, Liu C M, Xiang X, Dai W, Wang Z G, Li L, Yuan X D, He S B, Zu X T 2012 Acta Phys. Sin. 61 164207 (in Chinese) [章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛 2012 物理学报 61 164207]

    [23]

    Zhang C L, Wang Z G, Xiang X, Liu C M, Li L, Yuan X D, He S B, Zu X T 2012 Acta Phys. Sin. 61 114210 (in Chinese) [章春来, 王治国, 向霞, 刘春明, 李莉, 袁晓东, 贺少勃, 祖小涛 2012 物理学报 61 114210]

    [24]

    Li L, Xiang X, Zu X T, Yuan X D, He S B, Jiang X D, Zheng W G 2012 Chin. Phys. B 21 044212

    [25]

    Zhang Y L, Xiao J, Yuan X D, He S B, Jiang Y, Liu C M 2012 High Power Laser and Particle Beams 8 1806 (in Chinese) [张彦磊, 肖峻, 袁晓东, 贺少勃, 蒋勇, 刘春明 2012 强激光与粒子束 8 1806]

    [26]

    Dai W, Xiang X, Jiang Y, Wang H J, Li X B, Yuan X D, Zheng W G, Lv H B, Zu X T 2011 Opt. Lasers Eng. 49 273

    [27]

    Palmier S, Gallais L, Commandre M, Cormont P, Courchinoux R, Lamaignere L, Rullier J L, Legros P 2009 Appl. Surf. Sci. 255 5532

    [28]

    L N G 2006 Fourier Optics 2 (Beijing: China Machine Press) pp87-93 (in Chinese) [吕乃光 2006 傅里叶光学 2 (北京: 机械工业出版社) 第87-93页]

    [29]

    Zhang C C, Zhang L J, Liao W, Yan Z H, Chen J, Jiang Y L, Wang H J, Luan X Y, Ye Y Y, Zheng W G, Yuan X D 2015 Chin. Phys. B 24 024220

  • [1]

    Miller G H, Moses E I, Wuest C R 2004 Opt. Eng. 43 2841

    [2]

    Andre M L 1997 Proc. SPIE 3047 38

    [3]

    Peng H S, Zhang X M, Wei X F, Zheng W G, Jing F, Sui Z, Fan D Y, Lin Z Q 1999 Proc. SPIE 3492 25

    [4]

    Bercegol H, Bouchut P, Lamaignere L, Le Garrec B, Raze G 2003 Proc. SPIE 5273 312

    [5]

    Bass I L, Draggoo V G, Guss G M, Hackel R P, Norton M A 2006 Proc. SPIE 6261 A2612

    [6]

    Campbell J H, Hawley-Fedder R A, Stolz C J, Menapace J A, Borden M R, Whitman P K, Yu J, Runkel M, Riley M O, Feit M D, Hackel R P 2004 Proc. SPIE 5341 84

    [7]

    Hrubesh L W, Norton M A, Molander W A, Donohue E E, Maricle S M, Penetrante B M, Brusasco R M, Grundler W, Butler J A, Carr J W, Hill R M, Summers L J, Feit M D, Rubenchik A, Key M H, Wegner P J, Burnham A K, Hackel L A, Kozlowski M R 2002 Proc. SPIE 4679 23

    [8]

    Liu C M, Yang L, Yan Z H, Jiang Y, Wang H J, Liao W, Xiang X, He S B, L H B, Yuan X D, Zheng W G, Zu X T 2013 Acta Phys. Sin. 62 094701 (in Chinese) [刘春明, 杨亮, 晏中华, 蒋勇, 王海军, 廖威, 向霞, 贺少勃, 吕海兵, 袁晓东, 郑万国, 祖小涛 2013 物理学报 62 094701]

    [9]

    Adams J J, Bolourchi M, Bude J D, Guss G M, Matthews M J, Nostrand M C 2010 Proc. SPIE 7842 784223

    [10]

    Brusasco R M, Penetrante B M, Butler J A, Hrubesh L W 2002 Proc. SPIE 4679 40

    [11]

    Guss G, Bassa I, Draggoo V, Hackel R, Payne S, Lancaster M, Mark P 2007 Proc. SPIE 6403 M4030

    [12]

    Runkel M, Hawley-Fedder R, Widmayer C, Williams W, Weinzapfel C, Roberts D 2005 Proc. SPIE 5991 H9912

    [13]

    Bass I L, Guss G M, Nostrand M J, Wegner P J 2010 Proc. SPIE 7842 784220

    [14]

    Feit M D, Rubenchik A M 1997 Proc. SPIE 3047 971

    [15]

    Anthony T R, Cline H E 1977 J. Appl. Phys. 48 3888

    [16]

    Matthews M J, Bass I L, Guss G M, Widmayer C C, Ravizza F L 2007 Proc. SPIE 6720 A7200

    [17]

    Jiang Y 2012 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [蒋勇 2012 博士学位论文 (成都: 电子科技大学)]

    [18]

    Cormont P, Gallais L, Lamaignere L, Rullier J L, Combis P, Hebert D 2010 Opt. Express 18 2526068

    [19]

    Bourgeade A, Donval T, Gallais L, Lamaignere L, Rullier J L 2015 J. Opt. Soc. Am. B-Optical Physics 32 655

    [20]

    Jiang Y, Liu C M, Luo C S, Yuan X D, Xiang X, Wang H J, He S B, L H B, Ren W, Zheng W G, Zu X T 2012 Chin. Phys. B 21 054216

    [21]

    Jiang Y, Xiang X, Liu C M, Luo C S, Wang H J, Yuan X D, He S B, Ren W, L H B, Zheng W G, Zu X T 2012 Chin. Phys. B 21 064219

    [22]

    Zhang C L, Liu C M, Xiang X, Dai W, Wang Z G, Li L, Yuan X D, He S B, Zu X T 2012 Acta Phys. Sin. 61 164207 (in Chinese) [章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛 2012 物理学报 61 164207]

    [23]

    Zhang C L, Wang Z G, Xiang X, Liu C M, Li L, Yuan X D, He S B, Zu X T 2012 Acta Phys. Sin. 61 114210 (in Chinese) [章春来, 王治国, 向霞, 刘春明, 李莉, 袁晓东, 贺少勃, 祖小涛 2012 物理学报 61 114210]

    [24]

    Li L, Xiang X, Zu X T, Yuan X D, He S B, Jiang X D, Zheng W G 2012 Chin. Phys. B 21 044212

    [25]

    Zhang Y L, Xiao J, Yuan X D, He S B, Jiang Y, Liu C M 2012 High Power Laser and Particle Beams 8 1806 (in Chinese) [张彦磊, 肖峻, 袁晓东, 贺少勃, 蒋勇, 刘春明 2012 强激光与粒子束 8 1806]

    [26]

    Dai W, Xiang X, Jiang Y, Wang H J, Li X B, Yuan X D, Zheng W G, Lv H B, Zu X T 2011 Opt. Lasers Eng. 49 273

    [27]

    Palmier S, Gallais L, Commandre M, Cormont P, Courchinoux R, Lamaignere L, Rullier J L, Legros P 2009 Appl. Surf. Sci. 255 5532

    [28]

    L N G 2006 Fourier Optics 2 (Beijing: China Machine Press) pp87-93 (in Chinese) [吕乃光 2006 傅里叶光学 2 (北京: 机械工业出版社) 第87-93页]

    [29]

    Zhang C C, Zhang L J, Liao W, Yan Z H, Chen J, Jiang Y L, Wang H J, Luan X Y, Ye Y Y, Zheng W G, Yuan X D 2015 Chin. Phys. B 24 024220

  • [1] 张学阳, 陈军, 胡望宇. 激光辐照下熔石英表面损伤的原子模拟. 物理学报, 2023, 72(15): 156201. doi: 10.7498/aps.72.20230606
    [2] 张丽娟, 张传超, 陈静, 白阳, 蒋一岚, 蒋晓龙, 王海军, 栾晓雨, 袁晓东, 廖威. 激光诱导熔石英表面损伤修复中的气泡形成和控制研究. 物理学报, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [3] 苏锐, 张红, 姜胜利, 陈军, 韩伟. 熔石英中过氧缺陷及中性氧空位缺陷的几何结构、电子结构和吸收光谱的准粒子计算. 物理学报, 2016, 65(2): 027801. doi: 10.7498/aps.65.027801
    [4] 沈超, 程湘爱, 田野, 许中杰, 江天. 1064nm纳秒激光对熔石英元件后表面击穿的实验与数值研究. 物理学报, 2016, 65(15): 155201. doi: 10.7498/aps.65.155201
    [5] 蒋勇, 袁晓东, 王海军, 廖威, 刘春明, 向霞, 邱荣, 周强, 高翔, 杨永佳, 郑万国, 祖小涛, 苗心向. 退火对熔石英表面损伤修复点损伤增长的影响. 物理学报, 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
    [6] 韩伟, 冯斌, 郑奎兴, 朱启华, 郑万国, 巩马理. 高功率激光装置熔石英紫外损伤增长研究. 物理学报, 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [7] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [8] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [9] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟. 物理学报, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [10] 刘春明, 杨亮, 晏中华, 蒋勇, 王海军, 廖威, 向霞, 贺少勃, 吕海兵, 袁晓东, 郑万国, 祖小涛. CO2激光局域辐照对熔石英损伤特性的影响. 物理学报, 2013, 62(9): 094701. doi: 10.7498/aps.62.094701
    [11] 李熙斌, 袁晓东, 贺少勃, 吕海兵, 王海军, 向霞, 郑万国. 激光钝化对熔石英修复后损伤性能影响的实验研究. 物理学报, 2012, 61(6): 064401. doi: 10.7498/aps.61.064401
    [12] 章春来, 刘春明, 向霞, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛. 形状与位置对断点划痕场分布的影响研究. 物理学报, 2012, 61(16): 164207. doi: 10.7498/aps.61.164207
    [13] 章春来, 王治国, 向霞, 刘春明, 李莉, 袁晓东, 贺少勃, 祖小涛. 熔石英后表面坑点型划痕对光场调制的近场模拟. 物理学报, 2012, 61(11): 114210. doi: 10.7498/aps.61.114210
    [14] 章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛. 裂纹或气泡对熔石英损伤修复坑场调制的近场模拟. 物理学报, 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [15] 花金荣, 李莉, 向霞, 祖小涛. 熔石英亚表面杂质颗粒附近光场调制的三维模拟. 物理学报, 2011, 60(4): 044206. doi: 10.7498/aps.60.044206
    [16] 刘红婕, 周信达, 黄进, 王凤蕊, 蒋晓东, 黄竞, 吴卫东, 郑万国. 355 nm纳秒紫外激光辐照下熔石英前后表面损伤的对比研究. 物理学报, 2011, 60(6): 065202. doi: 10.7498/aps.60.065202
    [17] 黄进, 蒋晓东, 刘红婕, 吕海兵, 王海军, 袁晓东, 郑万国. 真空环境中紫外脉冲激光对熔石英抗损伤能力的影响. 物理学报, 2010, 59(7): 4677-4681. doi: 10.7498/aps.59.4677
    [18] 王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国. 激光诱导HF酸刻蚀后熔石英后表面划痕的损伤行为研究. 物理学报, 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [19] 刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东. 熔石英表面热致应力对激光损伤行为影响的研究. 物理学报, 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [20] 汪 莎, 陈 军, 童立新, 高清松, 刘 崇, 唐 淳. 熔石英棒-光纤构成的新型复合相位共轭镜的实验和理论研究. 物理学报, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
计量
  • 文章访问数:  5547
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-24
  • 修回日期:  2015-09-16
  • 刊出日期:  2016-01-20

/

返回文章
返回