搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直载荷下颗粒物质的声波探测和非线性响应

张攀 赵雪丹 张国华 张祺 孙其诚 侯志坚 董军军

引用本文:
Citation:

垂直载荷下颗粒物质的声波探测和非线性响应

张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军

Acoustic detection and nonlinear response of granular materials under vertical vibrations

Zhang Pan, Zhao Xue-Dan, Zhang Guo-Hua, Zhang Qi, Sun Qi-Cheng, Hou Zhi-Jian, Dong Jun-Jun
PDF
导出引用
  • 对于玻璃珠组成的颗粒介质样品, 本文测量了横波和纵波声速, 同时分析了剪切模量(G)与体积模量(B)的比值(G/B)随压强的变化规律. 结果表明, 在低压强下, 颗粒体系的纵波声速(cL )明显大于横波声速(cT ), 且体系的cL, cT 及G/B均随压强p变化呈幂律标度, 即cL p0.3817, cT p0.2809, G/B p-0.4539, 幂指数与文献[1]中预言的-1/2非常接近, 暗示在我们实验压强范围内的颗粒样品处于L玻璃状态. 此外, 本文还利用快速傅里叶变换法测量了玻璃珠样品中的声学衰减特性及二阶谐波随压强的变化, 发现: 纵波声衰减系数()、 接收端二倍频振幅(2 )与基频振幅(1 ) 平方的比值(2/12 ) 均随压强的增大而幂率减小, 分别为 p-0.1879和 2/12 p-0.866.
    Owing to their efficient penetration into elastic media, the measurement of sound waves can provide a sensitive probe of both the structural and mechanical properties of the materials through which they propagate. In this work, we first investigate the transversal and longitudinal wave velocities in granular assemblies composed of glass beads under uniaxial load by the time-of-flight method. Then the ratio G/B, (G is the shear modulus and B is the bulk modulus) as a function of pressure is analyzed, based on the theory of classical elasticity. Experimental results show that, with the pressure increasing from 10 to 100 kPa, i) the velocity of longitudinal wave (cL ) is obviously faster than that of transversal one (cT ) in the granular system(the ratio cL/cT is about 1.6), and the cL and cT of the system show power law scaling, i.e. cL p0.3817, cT p0.2809; ii) the ratio G/B decreases in the low pressure range for glass beads packing, i.e. G/B p-0.4539. It is found that the power-law exponent of G/B with pressure is very close to -1/2 (the prediction in 2015 Phys. Rev. Lett. 114 035502), suggesting that the granular system lies in glass L state within the pressure range in our experiment. Furthermore, the fast Fourier transform method is used to study the variation of acoustic attenuation and nonlinear characteristics in granular materials. Our results reveal that the acoustic attenuation coefficient () and the ratio of the second harmonic amplitude ( 2 ) to the square of fundamental amplitude ( 1 ) at the receiving end in the granular system, 2/12, both decrease in power law with the increase of pressure, i.e. p-0.1879, 2/12 p-0.866, respectively.
      通信作者: 张国华, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn ; 孙其诚, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11272048, 51239006)和欧盟Marie Curie国际合作项目(批准号: IRSES-294976)资助的课题.
      Corresponding author: Zhang Guo-Hua, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn ; Sun Qi-Cheng, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272048, 51239006) and the European Commission Marie Curie Actions (Grant No. IRSES-294976).
    [1]

    Wang X, Zheng W, Wang L, Xu N 2015 Phys. Rev. Lett. 114 035502

    [2]

    O'Hern C S, Silbert L E, Liu A J, Nagel S R 2003 Phys. Rev. E 68 011306

    [3]

    Ikeda A, Berthier L 2015 Phys. Rev. E 92 012309

    [4]

    Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 301 (in Chinese) [张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛 2012 物理学报 61 301]

    [5]

    Zhang Q, Li Y, Hou M, Jiang Y, Liu M 2012 Phys. Rev. E 85 031306

    [6]

    Merkel A, Tournat V, Gusev V 2014 Phys. Rev. E 90 023206

    [7]

    Zheng H P 2014 Chin. Phys. B 23 054503

    [8]

    Jia X, Caroli C, Velicky B 1999 Phys. Rev. Lett. 82 1863

    [9]

    Lherminier S, Planet R, Simon G, Vanel L, Ramos O 2014 Phys. Rev. Lett. 113 098001

    [10]

    Xu N 2011 Frontiers of Physics 6 109

    [11]

    Somfai E, van Hecke M, Ellenbroek W G, Shundyak K, van Saarloos W 2007 Phys. Rev. E 75 020301

    [12]

    Makse H A, Gland N, Johnson D L, Schwartz L 2004 Phys. Rev. E 70 061302

    [13]

    Zaccone A, Terentjev E M 2014 J. Appl. Phys. 115 033510

    [14]

    Zhang Z, Chen G, Zhang D 2014 Chin. Phys. B 23 054302

    [15]

    Huang D C, Chen W Z, Yang A N, Sun M, Hu F L, Zhao M 2014 Acta Phys. Sin. 63 154502 (in Chinese) [黄德财, 陈伟中, 杨安娜, 孙敏, 胡凤兰, 赵敏 2014 物理学报 63 154502]

    [16]

    Langlois V, Jia X 2015 Phys. Rev. E 91 022205

    [17]

    Brunet T, Jia X, Mills P 2008 Phys. Rev. Lett. 101 138001

    [18]

    Brunet T, Jia X, Johnson P A 2008 Geophys. Res. Lett. 35 L19308

    [19]

    Deng J, Wang S X, Han D H 2009 J. Geophys. Eng. 6 269

    [20]

    Miksic A, Alava M J 2013 Phys. Rev. E 88 032207

    [21]

    Johnson K L 1985 Contact Mechanics (Cambridge: Cambridge University Press)

    [22]

    Khidas Y, Jia X 2010 Phys. Rev. E 81 021303

    [23]

    Somfai E, Roux J N, Snoeijer J, van Hecke M, van Saarloos W 2005 Phys. Rev. E 72 021301

    [24]

    Tighe B 2011 Phys. Rev. Lett. 107 158303

    [25]

    Basu A, Xu Y, Still T, Arratia P E, Zhang Z, Nordstrom K N, Rieser J M, Gollub J P, Durian D J, Yodh A G 2014 Soft Matter 10 3027

    [26]

    Goodrich C P, Liu A J, Nagel S R 2014 Nat. Phys. 10 578

    [27]

    Vitelli V 2010 Soft Matter 6 3007

    [28]

    Hong J 2005 Phys. Rev. Lett. 94 108001

    [29]

    Wang P J, Xia J H, Li Y D, Liu C S 2007 Phys. Rev. E 76 041305

    [30]

    Wang P J, Li Y D, Xia J H, Liu C S 2008 Phys. Rev. E 77 060301

    [31]

    Thomas Brunet X J, Paul J 2006 French Acoustical Society 2006 Meeting, Paris 475

    [32]

    Wildenberg S V D, Hecke M V, Jia X 2013 Europhys. Lett. 101 14004

    [33]

    Renaud G, Calle S, Defontaine M 2010 J. Acoust. Soc. Am. 128 3344

  • [1]

    Wang X, Zheng W, Wang L, Xu N 2015 Phys. Rev. Lett. 114 035502

    [2]

    O'Hern C S, Silbert L E, Liu A J, Nagel S R 2003 Phys. Rev. E 68 011306

    [3]

    Ikeda A, Berthier L 2015 Phys. Rev. E 92 012309

    [4]

    Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 301 (in Chinese) [张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛 2012 物理学报 61 301]

    [5]

    Zhang Q, Li Y, Hou M, Jiang Y, Liu M 2012 Phys. Rev. E 85 031306

    [6]

    Merkel A, Tournat V, Gusev V 2014 Phys. Rev. E 90 023206

    [7]

    Zheng H P 2014 Chin. Phys. B 23 054503

    [8]

    Jia X, Caroli C, Velicky B 1999 Phys. Rev. Lett. 82 1863

    [9]

    Lherminier S, Planet R, Simon G, Vanel L, Ramos O 2014 Phys. Rev. Lett. 113 098001

    [10]

    Xu N 2011 Frontiers of Physics 6 109

    [11]

    Somfai E, van Hecke M, Ellenbroek W G, Shundyak K, van Saarloos W 2007 Phys. Rev. E 75 020301

    [12]

    Makse H A, Gland N, Johnson D L, Schwartz L 2004 Phys. Rev. E 70 061302

    [13]

    Zaccone A, Terentjev E M 2014 J. Appl. Phys. 115 033510

    [14]

    Zhang Z, Chen G, Zhang D 2014 Chin. Phys. B 23 054302

    [15]

    Huang D C, Chen W Z, Yang A N, Sun M, Hu F L, Zhao M 2014 Acta Phys. Sin. 63 154502 (in Chinese) [黄德财, 陈伟中, 杨安娜, 孙敏, 胡凤兰, 赵敏 2014 物理学报 63 154502]

    [16]

    Langlois V, Jia X 2015 Phys. Rev. E 91 022205

    [17]

    Brunet T, Jia X, Mills P 2008 Phys. Rev. Lett. 101 138001

    [18]

    Brunet T, Jia X, Johnson P A 2008 Geophys. Res. Lett. 35 L19308

    [19]

    Deng J, Wang S X, Han D H 2009 J. Geophys. Eng. 6 269

    [20]

    Miksic A, Alava M J 2013 Phys. Rev. E 88 032207

    [21]

    Johnson K L 1985 Contact Mechanics (Cambridge: Cambridge University Press)

    [22]

    Khidas Y, Jia X 2010 Phys. Rev. E 81 021303

    [23]

    Somfai E, Roux J N, Snoeijer J, van Hecke M, van Saarloos W 2005 Phys. Rev. E 72 021301

    [24]

    Tighe B 2011 Phys. Rev. Lett. 107 158303

    [25]

    Basu A, Xu Y, Still T, Arratia P E, Zhang Z, Nordstrom K N, Rieser J M, Gollub J P, Durian D J, Yodh A G 2014 Soft Matter 10 3027

    [26]

    Goodrich C P, Liu A J, Nagel S R 2014 Nat. Phys. 10 578

    [27]

    Vitelli V 2010 Soft Matter 6 3007

    [28]

    Hong J 2005 Phys. Rev. Lett. 94 108001

    [29]

    Wang P J, Xia J H, Li Y D, Liu C S 2007 Phys. Rev. E 76 041305

    [30]

    Wang P J, Li Y D, Xia J H, Liu C S 2008 Phys. Rev. E 77 060301

    [31]

    Thomas Brunet X J, Paul J 2006 French Acoustical Society 2006 Meeting, Paris 475

    [32]

    Wildenberg S V D, Hecke M V, Jia X 2013 Europhys. Lett. 101 14004

    [33]

    Renaud G, Calle S, Defontaine M 2010 J. Acoust. Soc. Am. 128 3344

  • [1] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究. 物理学报, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [2] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变. 物理学报, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [3] 杨林, 胡林, 张兴刚. 二维晶格颗粒堆积中侧壁的压力分布与转向系数. 物理学报, 2015, 64(13): 134502. doi: 10.7498/aps.64.134502
    [4] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [5] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [6] 王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播. 物理学报, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [7] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究. 物理学报, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [8] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [9] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测. 物理学报, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [10] 郑鹤鹏, 蒋亦民, 彭政, 符力平. 颗粒固体弹性势能的声波性质. 物理学报, 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [11] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [12] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化. 物理学报, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [13] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 物理学报, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [14] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [15] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响. 物理学报, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [16] 郑鹤鹏, 蒋亦民. Couette颗粒系统中静态应力和侧压力系数的非线性弹性理论分析. 物理学报, 2008, 57(12): 7919-7927. doi: 10.7498/aps.57.7919
    [17] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [18] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [19] 柳学榕, 胡泊, 刘文汉, 高琛. 扫描近场微波显微镜测量非线性介电常数的理论校准系数. 物理学报, 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [20] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
计量
  • 文章访问数:  6766
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-06
  • 修回日期:  2015-09-15
  • 刊出日期:  2016-01-20

/

返回文章
返回