搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子束辐照下的注氘铝的结构变化

李杰 高进 万发荣

引用本文:
Citation:

电子束辐照下的注氘铝的结构变化

李杰, 高进, 万发荣

The change of microstructure in deuteron-implanted aluminum under electron irradiation

Li Jie, Gao Jin, Wan Fa-Rong
PDF
导出引用
  • 利用离子加速器在室温下对纯铝注入氘离子或氢离子, 然后在透射电镜中对注氘铝或注氢铝中的气泡进行电子束辐照, 发现在电子束辐照下气泡会长大、破裂. 随着气泡的变化, 选区电子衍射花样中出现了表示多晶存在的衍射环. 这表明电子束辐照气泡时, 发生某种放热现象, 从而使附近的铝先熔化后再凝固, 由单晶变为多晶.
    As known for a long time, bubbles in liquid would emit light under ultrasonic waves. This experiment, called sonoluminescence, has attracted many people to research on it, but its mechanism is not yet clear. It is reasonable to think that similar phenomenon involving bubbles may happen in solid materials, but its opacity prevents researchers to detect such a kind of phenomenon. This paper investigates the change of gas bubbles by transmission electron microscope (TEM), being able to overcome the difficulty of opacity of materials. Thin film samples of pure aluminum are prepared for TEM experiment by jet chemical polishing. The samples are implanted first by deuterium or hydrogen at room temperature using ion accelerator, followed by electron irradiation under 200 kV TEM. Gas bubbles will form in aluminum after ion implantation, and then grow into larger ones or be collapsed under electron irradiation. Electron diffraction rings of polycrystals appear together with the change of gas bubbles. This kind of diffraction rings of polycrystals could be observed both in deuterium-implanted and hydrogen-implanted aluminum, but would never be found in the case of electron irradiation on the aluminum without implantation of hydrogen or deuterium. The polycrystals of aluminum are not due to the heating effect of electron beam, even electron beam could make a hole in the film sample finally. For the sample of aluminum containing no hydrogen or deuterium, only dislocation loops can be observed during electron irradiation. It may be that a kind of heat emission occurs when the gas bubbles are irradiated by electron beams, but the heat emission would not be due to deuterium fusion reaction because the electron beam-induced polycrystals occur not only in deuterium case, but also in hydrogen case, indicating that the implanted deuterium is not the necessary condition for heat emission. In addition, the energy dispersive spectrometer in TEM is used to detect the possible unique X-ray signals, but none of any special peak below 40 keV in the X-ray spectrum can be found. The plasmatization of gas in the bubbles under electron beam irradiation is used to try to explain the mechanism of such heat emission.
      通信作者: 万发荣, wanfr@mater.ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 59971010)和高等学校博士学科点专项科研基金(批准号: 20010008003)资助的课题.
      Corresponding author: Wan Fa-Rong, wanfr@mater.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 59971010) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20010008003).
    [1]

    Kamada K, Sagara A, Kinoshita H, Takahashi H 1988 Scr. Metall. 22 1281

    [2]

    Kamada K 1992 Jpn. J. Appl. Phys. 31 L1287

    [3]

    Kamada K 1989 J. Nucl. Mater. 169 141

    [4]

    Kinoshita H, Takahashi H 1992 Bulletin of the Faculty of Engineering, Hokkaido University 162 109

    [5]

    Kamada K, Kinoshita H, Takahashi H, Kakihana H 1996 J. At. Energy Soc. Jpn. 2 143

    [6]

    Buckley C E, Birnbaum H K, Lin J S, Spooner S, Bellmann D, Staron P, Udovic T J, Hollar E 2001 J. Appl. Crystallogr. 34 119

    [7]

    Bhattacharyya S R, Chini T K, Basn D 1997 J. Mater. Sci. Lett. 16 577

    [8]

    Puttterman S J 1995 Sci. Am. 272 46

    [9]

    Chen Q D, Wang L 2005 Phys. Lett. A 339 110

    [10]

    Chen Q D, Fu M L, Ai X C, Zhang J P, Wang L 2004 Phys. Rev. E 70 047301

    [11]

    Zhang W J, An Y 2015 Chin. Phys. B 24 047802

    [12]

    An Y, Zhang W J 2012 Chin. Phys. B 21 017806

    [13]

    Ghoniem N M, Kulcinski G M 1979 Radiat. Eff. 41 81

    [14]

    Linderoth S, Rajainmaki H, Nieminen R M 1987 Phys. Rev. B 35 5524

    [15]

    Xiao X 2009 M. S. Thesis (Beijing: University of Science and Technology Beijing) (in Chinese) [肖鑫 2009 硕士学位论文(北京:北京科技大学)]

    [16]

    Lu R B 2010 The Collection by Lu Runbao(ShenYang: LiaoHai Press) p190 (in Chinese) [鲁润宝 2010 鲁润宝文集(沈阳:辽海出版社) 第190页]

  • [1]

    Kamada K, Sagara A, Kinoshita H, Takahashi H 1988 Scr. Metall. 22 1281

    [2]

    Kamada K 1992 Jpn. J. Appl. Phys. 31 L1287

    [3]

    Kamada K 1989 J. Nucl. Mater. 169 141

    [4]

    Kinoshita H, Takahashi H 1992 Bulletin of the Faculty of Engineering, Hokkaido University 162 109

    [5]

    Kamada K, Kinoshita H, Takahashi H, Kakihana H 1996 J. At. Energy Soc. Jpn. 2 143

    [6]

    Buckley C E, Birnbaum H K, Lin J S, Spooner S, Bellmann D, Staron P, Udovic T J, Hollar E 2001 J. Appl. Crystallogr. 34 119

    [7]

    Bhattacharyya S R, Chini T K, Basn D 1997 J. Mater. Sci. Lett. 16 577

    [8]

    Puttterman S J 1995 Sci. Am. 272 46

    [9]

    Chen Q D, Wang L 2005 Phys. Lett. A 339 110

    [10]

    Chen Q D, Fu M L, Ai X C, Zhang J P, Wang L 2004 Phys. Rev. E 70 047301

    [11]

    Zhang W J, An Y 2015 Chin. Phys. B 24 047802

    [12]

    An Y, Zhang W J 2012 Chin. Phys. B 21 017806

    [13]

    Ghoniem N M, Kulcinski G M 1979 Radiat. Eff. 41 81

    [14]

    Linderoth S, Rajainmaki H, Nieminen R M 1987 Phys. Rev. B 35 5524

    [15]

    Xiao X 2009 M. S. Thesis (Beijing: University of Science and Technology Beijing) (in Chinese) [肖鑫 2009 硕士学位论文(北京:北京科技大学)]

    [16]

    Lu R B 2010 The Collection by Lu Runbao(ShenYang: LiaoHai Press) p190 (in Chinese) [鲁润宝 2010 鲁润宝文集(沈阳:辽海出版社) 第190页]

  • [1] 周书星, 方仁风, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. InP HEMT外延结构材料抗电子辐照加固设计. 物理学报, 2022, 71(3): 037202. doi: 10.7498/aps.71.20211265
    [2] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2022, 71(1): 016102. doi: 10.7498/aps.71.20211229
    [3] 周书星, 方仁风, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. InP HEMT外延结构材料抗电子辐照加固设计研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211265
    [4] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211229
    [5] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [6] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖. 质子辐照对永磁合金微观结构演化的研究. 物理学报, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [7] 杜玉峰, 崔丽娟, 李金升, 李然然, 万发荣. 铝中气泡在电子束辐照下的异常放热现象. 物理学报, 2018, 67(21): 216101. doi: 10.7498/aps.67.20181140
    [8] 曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙. 正电子湮没谱学研究半导体材料微观结构的应用进展. 物理学报, 2017, 66(2): 027801. doi: 10.7498/aps.66.027801
    [9] 玛丽娅, 李豫东, 郭旗, 艾尔肯, 王海娇, 曾骏哲. In0.53Ga0.47As/InP量子阱与体材料的1 MeV电子束辐照光致发光谱研究. 物理学报, 2015, 64(15): 154217. doi: 10.7498/aps.64.154217
    [10] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [11] 蔡杰, 季乐, 杨盛志, 张在强, 刘世超, 李艳, 王晓彤, 关庆丰. 强流脉冲电子束作用下金属锆的微观结构与应力状态. 物理学报, 2013, 62(15): 156106. doi: 10.7498/aps.62.156106
    [12] 李论雄, 苏江滨, 吴燕, 朱贤方, 王占国. 电子束诱导单壁碳纳米管不稳定的新观察. 物理学报, 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [13] 关庆丰, 吕鹏, 王孝东, 万明珍, 顾倩倩, 陈波. 质子辐照下Mo/Si多层膜反射镜的微观结构状态. 物理学报, 2012, 61(1): 016107. doi: 10.7498/aps.61.016107
    [14] 李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰. 强流脉冲电子束诱发纯钛表面的微观结构及应力状态. 物理学报, 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [15] 赵衡煜, 俞平胜, 郭鑫, 苏良碧, 李欣年, 方晓明, 杨秋红, 徐军. 电子束辐照诱导Bi:α-BaB2O4 单晶近红外宽带发光的研究. 物理学报, 2011, 60(9): 097802. doi: 10.7498/aps.60.097802
    [16] 范鲜红, 陈 波, 关庆丰. 质子辐照对纯铝薄膜微观结构的影响. 物理学报, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [17] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [18] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构. 物理学报, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] 韩 逸, 班春燕, 巴启先, 王书晗, 崔建忠. 磁场对液态铝和固态铁界面微观组织的影响. 物理学报, 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
    [20] 陶向明, 曾耀武, 冯春木, 焦正宽, 叶高翔. 沉积在液体衬底上连续铝薄膜的微观结构. 物理学报, 2000, 49(11): 2235-2239. doi: 10.7498/aps.49.2235
计量
  • 文章访问数:  2816
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-09
  • 修回日期:  2015-10-14
  • 刊出日期:  2016-01-20

电子束辐照下的注氘铝的结构变化

  • 1. 北京科技大学材料科学与工程学院, 北京 100083
  • 通信作者: 万发荣, wanfr@mater.ustb.edu.cn
    基金项目: 国家自然科学基金(批准号: 59971010)和高等学校博士学科点专项科研基金(批准号: 20010008003)资助的课题.

摘要: 利用离子加速器在室温下对纯铝注入氘离子或氢离子, 然后在透射电镜中对注氘铝或注氢铝中的气泡进行电子束辐照, 发现在电子束辐照下气泡会长大、破裂. 随着气泡的变化, 选区电子衍射花样中出现了表示多晶存在的衍射环. 这表明电子束辐照气泡时, 发生某种放热现象, 从而使附近的铝先熔化后再凝固, 由单晶变为多晶.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回