搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶液中球形晶体溶解的分析

王小慧 陈明文 王自东

引用本文:
Citation:

溶液中球形晶体溶解的分析

王小慧, 陈明文, 王自东

Analysis of spherical crystal dissolution in the solution

Wang Xiao-Hui, Chen Ming-Wen, Wang Zi-Dong
PDF
导出引用
  • 从物质溶液浓度变化角度考虑了球形晶体在溶液中溶解随表面张力的变化, 利用渐近方法求出了在溶液中球形晶体溶解的浓度和界面的近似解析解, 能够计算出溶解过程中球形晶体溶解的浓度、界面演化形态. 研究了表面张力对于溶液中溶质浓度分布、球晶界面形态和溶解速度的影响. 结果表明, 表面张力促进了球形晶体在溶液中的溶解. 随着表面张力参数增大, 溶液中在界面前沿的溶质浓度升高, 球形晶体的溶解速度增大; 随着时间的增加, 溶解速度逐渐变大, 球形晶体半径逐渐变小, 直至溶解结束.
    Dissolution has attracted considerable attention since the dissolution is a common phenomenon in nature, and is of fundamental interest to reveal the morphology evolutions and microstructures of materials in materials science and pharmaceutical industry. A lot of research has been made in the field of crystal dissolution. And the solid-liquid interfacial energy is recognized as playing a key role in a wide range of material phenomena.The goal of the present study is to present analytical results for the dissolution of spherical crystal with the consideration of surface tension. In this review, we introduce the recent progress of spherical particle dissolution through similar studies. In our paper, a mathematical model is proposed to describe the dissolution process of a spherical crystal with moving boundary. The effect of surface tension through the Gibbs-Thomson condition is included in the mathematical model. And the dissolution of the spherical crystal is considered from the perspective of the concentration change of the solution. An asymptotic solution of the concentration and morphology for a spherical crystal in the dissolution is obtained by using the matched asymptotic expansion method. The results show that the surface tension has great effects on the concentration and interface shape of spherical crystal dissolution. As the surface tension parameter increases, the radius of the crystal decreases, the velocity of the spherical dissolution and the concentration of the solution increase. We have the conclusion that surface tension accelerates the dissolution process of the spherical crystal. And the larger the surface tension parameter, the faster the dissolution rate is and the shorter the dissolution time. The particle radius decreases with time going by, and the dissolution velocity increases with time increasing until the dissolution is completed. The concentration of the dissolution and interface shape of the spherical crystal can be calculated with the results obtained in this paper. It is shown that our analytical results accord well with the results obtained from the numerical results of Vermolen et al. [Vermolen F J, Vuik C, Zwaag S V D 2003 Mater. Sci. Eng. A 347 265].
      Corresponding author: Chen Ming-Wen, chenmw@ustb.edu.cn;wangzd@mater.ustb.edu.cn ; Wang Zi-Dong, chenmw@ustb.edu.cn;wangzd@mater.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10972030).
    [1]

    Daculsi G, Legeros R Z, Mitre D 1989 Calcif. Tissue Int. 45 95

    [2]

    Lttge A 2006 J. Electron. Spectrosc. Rerat. Phenom. 150 248

    [3]

    Plomp E R, Rooijen R V, Akimoto H, Frossati G, Jochensen R, Saarloos W V 2001 J. Low Temp. Phys. 124 169

    [4]

    Lu K, Sheng H W, Jin C H 1997 Chin. J. Marer. Res. 11 658 (in Chinese) [卢珂, 生红卫, 金朝晖 1997 材料研究学报 11 658]

    [5]

    Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutscher G, Ben-David T, Penisson J M, Bourret A 1994 Surf. Sci. 303 231

    [6]

    Huang Z X, Zheng Q S 1998 Acta Mech. Sin. 30 247 (in Chinese) [黄再兴, 郑泉水 1998 力学学报 30 247]

    [7]

    Lu M, Huang H L, Yu D H, Liu W Q, Wei W H 2015 Acta Phys. Sin. 64 106101 (in Chinese) [卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和 2015 物理学报 64 106101]

    [8]

    He A M, Qin C S, Shao J L, Wang P 2009 Acta Phys. Sin. 58 2667 (in Chinese) [何安民, 秦承森, 邵建立, 王裴 2009 物理学报 58 2667]

    [9]

    Tong Z H, Liu H T, Chang J Z, An K 2012 Acta Phys. Sin. 61 024401 (in Chinese) [仝志辉, 刘汉涛, 常建忠, 安康 2012 物理学报 61 024401]

    [10]

    Zhang Y X, Walker D, Lesher C E 1989 Contrib. Mineral. Petrol. 102 492

    [11]

    Rice R G, Dob D D 2006 Chem. Eng. Sci. 61 775

    [12]

    Dong X X, He L J, Mi G B, Li P J 2014 Chin. Phys. B 23 110204

    [13]

    Lupulescu A, Glicksman M E, Koss M B 2005 J. Cryst. Growth 276 549

    [14]

    Font F, Myers T G, Mitchell S L 2015 Microfluid. Nanofluid. 18 233

    [15]

    Wu B S, Tillman P, McCue S W, Hill J M 2009 J. Nanosci. Nanotechnol. 9 885

    [16]

    Vermolen F J, Vuik C, Zwaag S V D 2003 Mater. Sci. Eng. A 347 265

  • [1]

    Daculsi G, Legeros R Z, Mitre D 1989 Calcif. Tissue Int. 45 95

    [2]

    Lttge A 2006 J. Electron. Spectrosc. Rerat. Phenom. 150 248

    [3]

    Plomp E R, Rooijen R V, Akimoto H, Frossati G, Jochensen R, Saarloos W V 2001 J. Low Temp. Phys. 124 169

    [4]

    Lu K, Sheng H W, Jin C H 1997 Chin. J. Marer. Res. 11 658 (in Chinese) [卢珂, 生红卫, 金朝晖 1997 材料研究学报 11 658]

    [5]

    Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutscher G, Ben-David T, Penisson J M, Bourret A 1994 Surf. Sci. 303 231

    [6]

    Huang Z X, Zheng Q S 1998 Acta Mech. Sin. 30 247 (in Chinese) [黄再兴, 郑泉水 1998 力学学报 30 247]

    [7]

    Lu M, Huang H L, Yu D H, Liu W Q, Wei W H 2015 Acta Phys. Sin. 64 106101 (in Chinese) [卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和 2015 物理学报 64 106101]

    [8]

    He A M, Qin C S, Shao J L, Wang P 2009 Acta Phys. Sin. 58 2667 (in Chinese) [何安民, 秦承森, 邵建立, 王裴 2009 物理学报 58 2667]

    [9]

    Tong Z H, Liu H T, Chang J Z, An K 2012 Acta Phys. Sin. 61 024401 (in Chinese) [仝志辉, 刘汉涛, 常建忠, 安康 2012 物理学报 61 024401]

    [10]

    Zhang Y X, Walker D, Lesher C E 1989 Contrib. Mineral. Petrol. 102 492

    [11]

    Rice R G, Dob D D 2006 Chem. Eng. Sci. 61 775

    [12]

    Dong X X, He L J, Mi G B, Li P J 2014 Chin. Phys. B 23 110204

    [13]

    Lupulescu A, Glicksman M E, Koss M B 2005 J. Cryst. Growth 276 549

    [14]

    Font F, Myers T G, Mitchell S L 2015 Microfluid. Nanofluid. 18 233

    [15]

    Wu B S, Tillman P, McCue S W, Hill J M 2009 J. Nanosci. Nanotechnol. 9 885

    [16]

    Vermolen F J, Vuik C, Zwaag S V D 2003 Mater. Sci. Eng. A 347 265

  • [1] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [2] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响. 物理学报, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [3] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用. 物理学报, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [4] 成潇潇, 刘建国, 徐亮, 徐寒杨, 金岭, 束胜全, 薛明. 基于页岩气返排液中污染气体浓度及扩散模型研究. 物理学报, 2021, 70(13): 130202. doi: 10.7498/aps.70.20210017
    [5] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响. 物理学报, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [6] 沈婉萍, 尤仕佳, 毛鸿. 夸克介子模型的相图和表面张力. 物理学报, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [7] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [8] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟. 物理学报, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [9] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [10] 刘汉涛, 江山, 王艳华, 王婵娟, 李海桥. 溶解椭圆颗粒沉降的介观尺度数值模拟. 物理学报, 2015, 64(11): 114401. doi: 10.7498/aps.64.114401
    [11] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析. 物理学报, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [12] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [13] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [14] 仝志辉, 刘汉涛, 常建忠, 安康. 双颗粒在溶解条件下沉降的多相流动特性. 物理学报, 2012, 61(2): 024401. doi: 10.7498/aps.61.024401
    [15] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [16] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究. 物理学报, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [17] 刘汉涛, 仝志辉, 安康, 马理强. 溶解与热对流对固体颗粒运动影响的直接数值模拟. 物理学报, 2009, 58(9): 6369-6375. doi: 10.7498/aps.58.6369
    [18] 周桂耀, 侯峙云, 李曙光, 韩 颖, 侯蓝田. 微结构光纤制备过程中不同位置空气孔的形变量分析. 物理学报, 2007, 56(11): 6486-6489. doi: 10.7498/aps.56.6486
    [19] 史秀梅, 王 强, 牛小娟, 李晨曦, 王凤平, 陆坤权. Li2O-2B2O3熔体的物性研究. 物理学报, 2006, 55(1): 76-79. doi: 10.7498/aps.55.76
    [20] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
计量
  • 文章访问数:  6970
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-16
  • 修回日期:  2015-11-14
  • 刊出日期:  2016-02-05

/

返回文章
返回