搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低频标准真空涨落的测量

薛佳 秦际良 张玉驰 李刚 张鹏飞 张天才 彭堃墀

引用本文:
Citation:

低频标准真空涨落的测量

薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀

Measurement of standard vacuum noise at low frequencies

Xue Jia, Qin Ji-Liang, Zhang Yu-Chi, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai, Peng Kun-Chi
PDF
导出引用
  • 采用自平衡零拍方案, 对低频段的标准量子真空涨落进行了测量. 实验确定了该系统的饱和光功率约为3.2 mW. 在10 Hz400 kHz的频率范围内, 系统的共模抑制比平均为55 dB, 在100 Hz处高达63 dB, 对激光经典技术噪声具有很强的抑制作用. 当入射光功率为400 W 时, 真空涨落噪声达到11 dB. 此低频量子真空噪声探测系统可广泛应用于量子计量和量子光学等研究领域.
    Vacuum fluctuation at audio frequencies is very important and interesting in many research fields, such as the gravitational wave detection, ultra-weak magnetic field measurement, and the research of quantum metrology, etc. Since the generation of squeezed light in 1985, most of the squeezed light have been generated and measured at radio frequencies (~MHz) as there has not been much technical noise at higher frequencies. In the Michelson-interferometer-based gravitational wave detection, the detection band has frequencies from a few to tens of thousands Hz. Measuring vacuum noise at such low frequencies is a challenge since we have to stabilize and control all the audio noises and the interferences from a variety of mechanical and electronic noises, therefore a very high classical noise suppression is needed when the measurement time increases. In order to measure the squeezed light of low frequencies, the standard vacuum noise at audio frequencies must be measured. In this paper, a balanced homodyne detection system for measuring the low-frequency quantum vacuum noises is reported. It is not trivial to extend the detected frequency to very low analysis frequencies. Through a self-made self-subtraction balanced homodyne configuration, which can eliminate the DC component of each photocurrent from the photodiode and the classical common-mode technical noise, the standard vacuum noise has been detected. The linearity of the vacuum noise power has been validated by varying the local oscillator power, showing that the saturation power of light incidence is about 3.2 mW. When the incident-light power is 400 W, the standard vacuum noise is 11 dB higher than the electronic noise at 80 Hz. In the regime of about 80 Hz to 400 kHz, the linearity of the standard noise power as a function of incident laser power is verified. However, when the measurement is carried out at even lower frequencies, for example, 50 Hz, we may encounter some excess and non-stationary noises and find that the measured noise power is not proportional to the incident light power any more. These non-stationary noises are the main technical obstacle at low frequencies. The average common mode rejection ratio in the test frequency range from 10 Hz to 400 kHz is 55 dB and its maximum 63 dB at 100 Hz is obtained, implying a high suppression of the technical noise. This self-made homodyne vacuum noise detector can be widely used for precision measurement in quantum metrology and quantum optics.
      通信作者: 张玉驰, yczhang@sxu.edu.cn;tczhang@sxu.edu.cn ; 张天才, yczhang@sxu.edu.cn;tczhang@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 91336107, 61227902, 61275210)和山西省自然科学基金(批准号: 2014021011-2)资助的课题.
      Corresponding author: Zhang Yu-Chi, yczhang@sxu.edu.cn;tczhang@sxu.edu.cn ; Zhang Tian-Cai, yczhang@sxu.edu.cn;tczhang@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91336107, 61227902, 61275210) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014021011-2).
    [1]

    Caves C M 1981 Phys. Rev. D 23 1693

    [2]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [3]

    Chelkowski S 2007 Ph. D. Dissertation (Hannover: Gottfried Wilhelm Leibniz Universitt)

    [4]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 104 093602

    [5]

    Wolfgramm F, Cer A, Beduini F A, Predojević A, Koschorreck M, 2010 Phys. Rev. Lett. 105 053601

    [6]

    Horrom T, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803

    [7]

    Banaszek K, Demkowicz-Dobrzański R, Walmsley I A 2009 Nat. Photon. 3 673

    [8]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409

    [9]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [10]

    Zhang T C, Zhang J X, Xie C D, Peng K C 1998 Acta Phys. Sin. 7 340 (Overseas Edition)

    [11]

    Zhang T C, Li T Y, Effenterre D V, Xie C D, Peng K C 1998 Acta Phys. Sin. 47 1498 (in Chinese) [张天才, 李廷鱼, Effenterre D V, 谢常德, 彭堃墀 1998 物理学报 47 1498]

    [12]

    Dong R F, Zhang J X, Zhang T C, Zhang J, Xie C D, Peng K C 2001 Acta Phys. Sin. 50 462 (in Chinese) [董瑞芳, 张俊香, 张天才, 张 靖, 谢常德, 彭堃墀 2001 物理学报 50 462]

    [13]

    Zhou Q Q, Liu J L, Zhang K S 2010 Acta Sin. Quantum Opt. 16 152 (in Chinese) [周倩倩, 刘建丽, 张宽收 2010 量子光学学报 16 152]

    [14]

    Wang J J, Jia X J, Peng K C 2012 Acta Opt. Sin. 31 0127001 (in Chinese) [王金晶, 贾晓军, 彭堃墀 2012 光学学报 31 0127001]

    [15]

    McKenzie K 2008 Ph. D. Dissertation (Canberra: Australian National University)

    [16]

    Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371

    [17]

    Vahlbruch H 2008 Ph. D. Dissertation (Hannover: The Albert Einstein Institute and the Institute of Gravitational Physics of Leibniz Universitt Hannover)

    [18]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Class. Quantum Grav. 29 145015

    [19]

    Dwyer S E 2013 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [20]

    The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [21]

    Stefszky M S 2012 Ph. D. Dissertation (Canberra: Australian National University)

    [22]

    Rogalski A (translated by Zhou H X, Cheng Y F) 2014 Infrared Detectors (Beijing: China Machine Press) pp47, 48 (in Chinese) [罗格尔斯基 A 著 (周海宪, 程云芳 译) 2014 红外探测器(北京: 机械工业出版社)第47, 48页]

  • [1]

    Caves C M 1981 Phys. Rev. D 23 1693

    [2]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [3]

    Chelkowski S 2007 Ph. D. Dissertation (Hannover: Gottfried Wilhelm Leibniz Universitt)

    [4]

    Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 104 093602

    [5]

    Wolfgramm F, Cer A, Beduini F A, Predojević A, Koschorreck M, 2010 Phys. Rev. Lett. 105 053601

    [6]

    Horrom T, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803

    [7]

    Banaszek K, Demkowicz-Dobrzański R, Walmsley I A 2009 Nat. Photon. 3 673

    [8]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409

    [9]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763

    [10]

    Zhang T C, Zhang J X, Xie C D, Peng K C 1998 Acta Phys. Sin. 7 340 (Overseas Edition)

    [11]

    Zhang T C, Li T Y, Effenterre D V, Xie C D, Peng K C 1998 Acta Phys. Sin. 47 1498 (in Chinese) [张天才, 李廷鱼, Effenterre D V, 谢常德, 彭堃墀 1998 物理学报 47 1498]

    [12]

    Dong R F, Zhang J X, Zhang T C, Zhang J, Xie C D, Peng K C 2001 Acta Phys. Sin. 50 462 (in Chinese) [董瑞芳, 张俊香, 张天才, 张 靖, 谢常德, 彭堃墀 2001 物理学报 50 462]

    [13]

    Zhou Q Q, Liu J L, Zhang K S 2010 Acta Sin. Quantum Opt. 16 152 (in Chinese) [周倩倩, 刘建丽, 张宽收 2010 量子光学学报 16 152]

    [14]

    Wang J J, Jia X J, Peng K C 2012 Acta Opt. Sin. 31 0127001 (in Chinese) [王金晶, 贾晓军, 彭堃墀 2012 光学学报 31 0127001]

    [15]

    McKenzie K 2008 Ph. D. Dissertation (Canberra: Australian National University)

    [16]

    Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371

    [17]

    Vahlbruch H 2008 Ph. D. Dissertation (Hannover: The Albert Einstein Institute and the Institute of Gravitational Physics of Leibniz Universitt Hannover)

    [18]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Class. Quantum Grav. 29 145015

    [19]

    Dwyer S E 2013 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [20]

    The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [21]

    Stefszky M S 2012 Ph. D. Dissertation (Canberra: Australian National University)

    [22]

    Rogalski A (translated by Zhou H X, Cheng Y F) 2014 Infrared Detectors (Beijing: China Machine Press) pp47, 48 (in Chinese) [罗格尔斯基 A 著 (周海宪, 程云芳 译) 2014 红外探测器(北京: 机械工业出版社)第47, 48页]

  • [1] 黄天龙, 吴永政, 倪明, 汪士, 叶永金. 量子噪声对Shor算法的影响. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231414
    [2] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应. 物理学报, 2022, 71(1): 010302. doi: 10.7498/aps.71.20210992
    [3] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性. 物理学报, 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [4] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210992
    [5] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为. 物理学报, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [6] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [7] 关佳, 顾翊晟, 朱成杰, 羊亚平. 利用相干制备的三能级原子介质实现低噪声弱光相位操控. 物理学报, 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [8] 王飞, 黄益旺, 孙启航. 气泡体积分数对沙质沉积物低频声学特性的影响. 物理学报, 2017, 66(19): 194302. doi: 10.7498/aps.66.194302
    [9] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡. 物理学报, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [10] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备. 物理学报, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [11] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议. 物理学报, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [12] 邵辉丽, 李栋, 闫雪, 陈丽清, 袁春华. 基于增强拉曼散射的光子-原子双模压缩态的实现. 物理学报, 2014, 63(1): 014202. doi: 10.7498/aps.63.014202
    [13] 黄建衡, 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线微分相衬成像的噪声特性分析. 物理学报, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [14] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [15] 张岩, 于旭东, 邸克, 李卫, 张靖. 压缩态光场平衡零拍探测的位相锁定. 物理学报, 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [16] 陈文豪, 杜磊, 殷雪松, 康莉, 王芳, 陈松. PbS红外探测器低频噪声物理模型及缺陷表征研究. 物理学报, 2011, 60(10): 107202. doi: 10.7498/aps.60.107202
    [17] 王利, 毕思文, 王果果. 利用三平面腔镜共焦腔产生多模压缩光束. 物理学报, 2010, 59(1): 87-91. doi: 10.7498/aps.59.87
    [18] 鲁翠萍, 袁春华, 张卫平. 受激拉曼增益介质中的量子噪声特性研究. 物理学报, 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [19] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [20] 万琳, 刘素梅, 刘三秋. T-C模型中虚光子过程对光场压缩效应的影响. 物理学报, 2002, 51(1): 84-90. doi: 10.7498/aps.51.84
计量
  • 文章访问数:  5257
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-11
  • 修回日期:  2015-12-29
  • 刊出日期:  2016-02-05

/

返回文章
返回