-
采用脉冲激光沉积法在SrTiO3:0.7%Nb(100)单晶衬底上生长了La1.3Sr1.7Mn2O7(LSMO)薄膜, 并 研究了LSMO/SrTiO3-Nb异质结的输运性质和光伏效应. 研究发现, 异质结具有良好的整流特征和明显的光生伏特效应. 在532 nm激光辐照下, 光生电压随温度升高先增大后减小, 并且在150 K达到最大值400 mV, 此温度点与LSMO薄膜发生金属-绝缘体转变的温度一致, 这表明异质结的光生伏特效应受LSMO薄膜内部的输运特征调控. 进一步, 从光生电压随时间的变化曲线中分析发现, 上升沿符合一阶指数函数, 这与载流子的迁移过程相关; 而下降沿符合二阶指数函数, 这与结两侧载流子的外部回路中和以及材料内部的电子-空穴湮灭有关. 值得注意的是, 上升沿和下降沿的时间常数均随着温度先增大后减小, 且最大值均出现在LSMO薄膜的金属-绝缘转变温度.Perovskite oxide heterostructure possesses attractive magnetic, optical and electric properties, such as superconducting interface between two insulators, two-dimensional electron gas, positive giant magnetoresistance, photoelectric response characteristic, magnetocaloric effect, and coexistent different magnetic structures. Especially for the photoelectric response behaviors of A1-xAxMnO3 (A=La, Pr etc.; A = Sr, Ca etc.) perovskite manganese oxide heterostructure, one has made a systematic study on the photoelectric conversion efficiency, the photovoltaic response speed, and the in-plane lateral photovoltage. Besides A1-xAxMnO3 structure, manganese oxides can also exhibit the double layered perovskite structure A2-2xA1+2xMn2O7. Double layered perovskite structure can be regarded as the layers of perovskite and rock salt which are alternately stacked. This double layered perovskite manganese oxide (such as La2-2xSr1+2xMn2O7) is a natural structure of the tunnel structure: ferromagnetic metal layer-insulating layer-ferromagnetic metal layer. Double layered perovskite manganese oxide has not only the characteristics of giant magnetoresistance, but also the novel physical properties, such as persistent photoconductivity, etc. However, there are few reports on the physical properties of the double layered perovskite manganite oxides, heterostructures, especially the photovoltaic properties. In this work, the La1.3Sr1.7Mn2O7 (LSMO) film is deposited on an n-type SrTiO3-Nb (NSTO) single crystal substrate by a pulsed laser deposition method. Additionally, we study the transporting properties of LSMO/NSTO heterostructure and its photovoltaic effect. The heterostructure exhibits benign rectifying and palpable photovoltaic effect. Under the 532 nm laser irradiation, the photovoltage first increases and then decreases with temperature rising. The maximal photovoltage reaches 400 mV at 150 K which is consistent with the metal-insulator transition temperature of LSMO film. It is indicated that the photovoltaic effect of the heterostructure is regulated by the inner transporting characteristics of LSMO film. The dynamical process of the heterostructure, photovoltaic response, is analyzed. Meanwhile, by analyzing the relationship between the photovoltage and time, it is found that the rising edge fits to the first order exponential function, which is related to the migration of carriers. While the falling edge of second-order exponential function indicates that the compound of carriers has two different physical processes: 1 corresponds to the neutralization process of the carriers aggregated on both junction sides through the external circuit, and 2 corresponds to the annihilation process of non-equilibrium carriers. The carrier lifetime of our p-n junction is longer, on the order of ms, than those of other manganese oxides p-n junctions. Remarkably, the time constants of both the rising edge and falling edge first increase and then decrease as temperature increases, and the maximum values occur at the metal-insulator transition temperature of LSMO film.
-
Keywords:
- photovoltaic effect /
- double layered perovskite /
- heterostructure /
- carriers lifetime
[1] Reyren N, Thiel S, Caviglia A D, Fitting K L, Hammerl G, Richter C, Schneider C W, Kopp K, Retschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196
[2] Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A, Fert A 2007 Phys. Rev. Lett. 98 216803
[3] Ohtomo A, Hwang H Y 2006 Nature 441 120
[4] Jin K J, Lu H B, Zhao K, Ge C, He M, Yang G Z 2009 Adv. Mater. 21 4636
[5] Lu H B, Dai S Y, Chen Z H, Zhou Y L, Cheng B L, Jin K J, Liu L F, Yang G Z 2005 Appl. Phys. Lett. 86 032502
[6] Sun J R, Xiong C M, Shen B G, Wang P Y, Weng Y X 2004 Appl. Phys. Lett. 84 2611
[7] Liao L, Jin K J, Han P, Zhang L L, Lu H B, Ge C 2009 Chin. Phys. Lett. 26 057301
[8] Zhou W J, Jin K J, Guo H Z, He X, He M, Xu X L, Lu H B, Yang G Z 2015 Appl. Phys. Lett. 106 131109
[9] Zhong W, Au C T, Du Y W 2013 Chin. Phys. B 22 057501
[10] Hu A Y, Qin G P, Wu Z M, Cui Y T 2015 Chin. Phys. B 24 067501
[11] Assmann E, Blaha P, Laskowski R, Held K, Okamoto S, Sangiovanni G 2013 Phys. Rev. Lett. 110 078701
[12] Wang L, Jin K J, Ge C, Wang C, Guo H Z, Lu H B, Yang G Z 2013 Appl. Phys. Lett. 102 252907
[13] Wang L, Jin K J, Gu J X, Ma C, He X, Zhang J D, Wang C, Feng Y, Wan Q, Shi J A, Gu L, He M, Lu H B, Yang G Z 2014 Sci. Rep. 4 6980
[14] Wang L, Jin K J, Xing J, Ge C, Lu H B, Zhou W J, Yang G Z 2013 Appl. Opt. 52 3473
[15] Zhou W J, Jin K J, Guo H Z, Ge C, He M, Lu H B 2013 J. Appl. Phys. 114 224503
[16] Jin K J, Zhao K, Lu H B, Liao L, Yang G Z 2007 Appl. Phys. Lett. 91 081906
[17] Moritomo Y, Asamitsu A, Kuwahara H, Tokura Y 1996 Nature 380 141
[18] Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M, Tokura Y 1996 Science 274 1698
[19] Argyriou D N, Mitchell J F, Radaelli P G, Bordallo H N, Cox D E, Medarde M, Jorgensen J D 1999 Phys. Rev. B 59 8695
[20] Han L A, Chen C L, Dong H Y, Wang J Y, Gao G M, Luo B C 2008 Acta Phys. Sin. 57 0541 (in Chinese) [韩立安, 陈长乐, 董慧迎, 王建元, 高国棉, 罗炳成 2008 物理学报 57 0541]
[21] Jin K X, Zhao S G, Chen C L, Tan X Y, Jia X W 2009 J. Phys. D: Appl. Phys. 42 015001
[22] Liu Y X, Sun X C, Li B K, Lei Y 2014 JMCA 2 11651
[23] Luo Z, Gao J 2006 J. Appl. Phys. 100 056104
[24] Ma J J, Jin K X, Luo B C, Fan F, Xing H, Zhou C C, Chen C L 2010 Chin. Phys. Lett. 27 107304
[25] Chen P, Jin K X, Chen C L, Tan X Y 2011 Acta Phys. Sin. 60 067303 (in Chinese) [陈鹏, 金克新, 陈长乐,谭兴毅 2011 物理学报 60 067303]
[26] Wang J Y, Zhai W, Luo B C, Jin K X, Chen C L 2014 Solid State Commun. 187 10
[27] Liao L, Jin K J, Lu H B, Han P, He M, Yang G Z 2009 Solid State Commun. 149 915
[28] Qiu J, Lu H B, Jin K J, He M, Xing J 2007 Physica B 400 66
[29] Jin K X, Zhao S G, Tan X Y, Chen C L 2008 J. Phys. D: Appl. Phys. 41 045105
[30] Yan Z J, Yuan X, Xu Y B, Liu L Q, Zhang X 2007 Appl. Phys. Lett. 91 104101
-
[1] Reyren N, Thiel S, Caviglia A D, Fitting K L, Hammerl G, Richter C, Schneider C W, Kopp K, Retschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196
[2] Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A, Fert A 2007 Phys. Rev. Lett. 98 216803
[3] Ohtomo A, Hwang H Y 2006 Nature 441 120
[4] Jin K J, Lu H B, Zhao K, Ge C, He M, Yang G Z 2009 Adv. Mater. 21 4636
[5] Lu H B, Dai S Y, Chen Z H, Zhou Y L, Cheng B L, Jin K J, Liu L F, Yang G Z 2005 Appl. Phys. Lett. 86 032502
[6] Sun J R, Xiong C M, Shen B G, Wang P Y, Weng Y X 2004 Appl. Phys. Lett. 84 2611
[7] Liao L, Jin K J, Han P, Zhang L L, Lu H B, Ge C 2009 Chin. Phys. Lett. 26 057301
[8] Zhou W J, Jin K J, Guo H Z, He X, He M, Xu X L, Lu H B, Yang G Z 2015 Appl. Phys. Lett. 106 131109
[9] Zhong W, Au C T, Du Y W 2013 Chin. Phys. B 22 057501
[10] Hu A Y, Qin G P, Wu Z M, Cui Y T 2015 Chin. Phys. B 24 067501
[11] Assmann E, Blaha P, Laskowski R, Held K, Okamoto S, Sangiovanni G 2013 Phys. Rev. Lett. 110 078701
[12] Wang L, Jin K J, Ge C, Wang C, Guo H Z, Lu H B, Yang G Z 2013 Appl. Phys. Lett. 102 252907
[13] Wang L, Jin K J, Gu J X, Ma C, He X, Zhang J D, Wang C, Feng Y, Wan Q, Shi J A, Gu L, He M, Lu H B, Yang G Z 2014 Sci. Rep. 4 6980
[14] Wang L, Jin K J, Xing J, Ge C, Lu H B, Zhou W J, Yang G Z 2013 Appl. Opt. 52 3473
[15] Zhou W J, Jin K J, Guo H Z, Ge C, He M, Lu H B 2013 J. Appl. Phys. 114 224503
[16] Jin K J, Zhao K, Lu H B, Liao L, Yang G Z 2007 Appl. Phys. Lett. 91 081906
[17] Moritomo Y, Asamitsu A, Kuwahara H, Tokura Y 1996 Nature 380 141
[18] Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M, Tokura Y 1996 Science 274 1698
[19] Argyriou D N, Mitchell J F, Radaelli P G, Bordallo H N, Cox D E, Medarde M, Jorgensen J D 1999 Phys. Rev. B 59 8695
[20] Han L A, Chen C L, Dong H Y, Wang J Y, Gao G M, Luo B C 2008 Acta Phys. Sin. 57 0541 (in Chinese) [韩立安, 陈长乐, 董慧迎, 王建元, 高国棉, 罗炳成 2008 物理学报 57 0541]
[21] Jin K X, Zhao S G, Chen C L, Tan X Y, Jia X W 2009 J. Phys. D: Appl. Phys. 42 015001
[22] Liu Y X, Sun X C, Li B K, Lei Y 2014 JMCA 2 11651
[23] Luo Z, Gao J 2006 J. Appl. Phys. 100 056104
[24] Ma J J, Jin K X, Luo B C, Fan F, Xing H, Zhou C C, Chen C L 2010 Chin. Phys. Lett. 27 107304
[25] Chen P, Jin K X, Chen C L, Tan X Y 2011 Acta Phys. Sin. 60 067303 (in Chinese) [陈鹏, 金克新, 陈长乐,谭兴毅 2011 物理学报 60 067303]
[26] Wang J Y, Zhai W, Luo B C, Jin K X, Chen C L 2014 Solid State Commun. 187 10
[27] Liao L, Jin K J, Lu H B, Han P, He M, Yang G Z 2009 Solid State Commun. 149 915
[28] Qiu J, Lu H B, Jin K J, He M, Xing J 2007 Physica B 400 66
[29] Jin K X, Zhao S G, Tan X Y, Chen C L 2008 J. Phys. D: Appl. Phys. 41 045105
[30] Yan Z J, Yuan X, Xu Y B, Liu L Q, Zhang X 2007 Appl. Phys. Lett. 91 104101
计量
- 文章访问数: 5718
- PDF下载量: 191
- 被引次数: 0