搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ket-Bra纠缠态方法研究含时外场中与热库耦合Qubit的演化

任益充 范洪义

引用本文:
Citation:

Ket-Bra纠缠态方法研究含时外场中与热库耦合Qubit的演化

任益充, 范洪义

Solving the qubit coupled with reservoir under time-varying external field with Ket-Bra Entangled State Method

Ren Yi-Chong, Fan Hong-Yi
PDF
导出引用
  • 采用Ket-Bra纠缠态方法求解主方程, 研究了具有含时外场情况下单qubit和无相互作用的两qubit与热库耦合时的量子退相干、退纠缠现象. 对两qubit情形, 我们以共生纠缠度(concurrence)作为纠缠度量, 研究了其纠缠动力学演化过程. 研究表明即使系统内部不存在直接、间接的相互作用, 施加含时外场也能引起纠缠的震荡和复活, 这为通过施加控制外场抑制开放系统的退相干、退纠缠过程提供了理论支持.
    In this paper, we first make a brief review of the general method of solving master equation of density operator, which includes the C-number method method and the super-operator method. The C-number can transform quantum master equation into Fokker-Plank equation or the differential equation of density matrix elements, and this method has a wide applicable range but the Fokker-Plank equation and differential equation are difficult to solve. Besides, the solution is not always applicable for any initial condition. The super-operator method can solve master equation efficiently compared with C-number method, however the solving process of super-operator method mostly depends on the characteristics of Lie algebra. For instance, if the corresponding Lindblad operator can be divided into the generators of Su(2) or Su(1,1) Lie group, the super-operator is no longer applicable. Thus although super-operator is more efficiently than C-number method, it has a narrow applicable range. Furthermore, other researchers have made much effort to develop super-operator method, for instance, S.J. Wang proposed the left and right action operator, the left operator is the same as the general operator, while the right action operator from the right side acts on other general operator, thus the explicit formation of super-operator can be given by this method. Fan proposed the thermal entangled state representation which can convert operator between real mode and fictitious mode. All these developments depend on Lie algebra, thus they all have a narrow applicable range just like super-operator method. We introduce a new Ket-Bra entangled state (KBES) method in this paper, which can transform master equation into Schrodinger-like equation with the corresponding Ket-Bra entangled state. Then one can use the method of Schrodinger equation such as time evolution method, perturbation method, etc. to solve the master equation. Compared with C-number method and super-operator method, the KBES method has several merits. 1) A wide applicable range, KBES method is applicable for any master equation of finite-level system in theory. 2) Compatibility with computer programming, the most crucial procedure is to calculate the exponent of Lindblad operator eFt which needs the diagonalization of F, and all this can be finished by computer. 3) Most mature methods of Schrodinger equation can be used to solve master equation because of the KBES method can transform master equation into Schrodinger-like equation. Then we study the model which two-level qubit is coupled with reservoir under time-varying external field, the corresponding master equation is deduced and solved by KBES method. Furthermore, we analyze the decoherence evolution of density operator and we consider the entanglement evolutions of two uncoupled qubit cases. We find that the external field seriously influences the decoherence process. The off-diagonal elements 10(t) become damply oscillated when the external field exists, and the frequency of oscillate keeps growing along with . Besides, the dynamic evolution of concurrence is also influenced by the external field, which leads to the occurrence of both entanglement sudden death and entanglement sudden birth, while the last ESB phenomenon only happens under the external field. Thus, we thought that one can suppress the decoherence and disentanglement process by exerting suitable time-varying external field on the open system, of course, the suitable external field can also be obtained by our KBES method in theory.
      通信作者: 任益充, rych@mail.ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574295)资助的课题.
      Corresponding author: Ren Yi-Chong, rych@mail.ustc.edu.cn
    • Funds: Projec supported by the National Natural Science Foundation of China (Grant No. 11574295).
    [1]

    Ji Y H, Hu J J, Hu Y 2012 Chin. Phys. B 21 110304

    [2]

    Ji Y H, Liu Y M, Wang Z S 2011 Chin. Phys. B 20 070304

    [3]

    Chatuverdi S, Srinivassan V 1991 J. Mod. Opt. 38 777

    [4]

    Aralo-Aguilar L M, Moya-Cessa H 1998 Journal of the European Optical Society Part B 10 671

    [5]

    Ren Y C, Fan H Y {2015 International Journal of Theoretical Physics 55 2089

    [6]

    Ren Y C, Fan H Y 2015 arXiv preprint {arXiv: 1509. 01001

    [7]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [8]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [9]

    Yu T, Eberly J H 2009 Science 323 598

    [10]

    Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 456

    [11]

    Carmichael, Howard J 2014 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer Press) pp29-42

    [12]

    Lu H X, Yang J, Zhang Y D, et al. 2003 Phys. Rev. A 67 024101

    [13]

    Wang S J, Cao J M, Weiguny A 1989 Phys. Rev. A 40 1225

    [14]

    Song J, Fan H Y, Zhou J 2011 Acta Phys. Sin. 60 110302 (in Chinese) [宋军, 范洪义, 周军 2011 物理学报 60 110302]

    [15]

    Fan H Y, Li X C {2012 Acta Phys. Sin. 61 77 (in Chinese) [范洪义, 李学超 2012 物理学报 61 77]

    [16]

    Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) pp114-160 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论 (上海: 上海交通大学出版社) 第114页-160页]

    [17]

    Cong S 2014 Control of Quantum Systems: Theory and Methods (Wiley Press) pp73-96

    [18]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733

    [19]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [20]

    Yu T, Eberly J H 2009 Science 323 5914

    [21]

    Kowalewska-Kudłaszyk A, Leoński W 2010 Physica Scripta T140 014051

  • [1]

    Ji Y H, Hu J J, Hu Y 2012 Chin. Phys. B 21 110304

    [2]

    Ji Y H, Liu Y M, Wang Z S 2011 Chin. Phys. B 20 070304

    [3]

    Chatuverdi S, Srinivassan V 1991 J. Mod. Opt. 38 777

    [4]

    Aralo-Aguilar L M, Moya-Cessa H 1998 Journal of the European Optical Society Part B 10 671

    [5]

    Ren Y C, Fan H Y {2015 International Journal of Theoretical Physics 55 2089

    [6]

    Ren Y C, Fan H Y 2015 arXiv preprint {arXiv: 1509. 01001

    [7]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [8]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [9]

    Yu T, Eberly J H 2009 Science 323 598

    [10]

    Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 456

    [11]

    Carmichael, Howard J 2014 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer Press) pp29-42

    [12]

    Lu H X, Yang J, Zhang Y D, et al. 2003 Phys. Rev. A 67 024101

    [13]

    Wang S J, Cao J M, Weiguny A 1989 Phys. Rev. A 40 1225

    [14]

    Song J, Fan H Y, Zhou J 2011 Acta Phys. Sin. 60 110302 (in Chinese) [宋军, 范洪义, 周军 2011 物理学报 60 110302]

    [15]

    Fan H Y, Li X C {2012 Acta Phys. Sin. 61 77 (in Chinese) [范洪义, 李学超 2012 物理学报 61 77]

    [16]

    Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) pp114-160 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论 (上海: 上海交通大学出版社) 第114页-160页]

    [17]

    Cong S 2014 Control of Quantum Systems: Theory and Methods (Wiley Press) pp73-96

    [18]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733

    [19]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [20]

    Yu T, Eberly J H 2009 Science 323 5914

    [21]

    Kowalewska-Kudłaszyk A, Leoński W 2010 Physica Scripta T140 014051

  • [1] 张治达, 易康源, 陈远珍, 燕飞. 多能级系统中的动力学解耦. 物理学报, 2023, 72(10): 100305. doi: 10.7498/aps.72.20222398
    [2] 巩龙延, 杨慧, 赵生妹. 中间测量对受驱单量子比特统计复杂度的影响. 物理学报, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [3] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干. 物理学报, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [4] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [5] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索. 物理学报, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [6] 任益充, 范洪义. 两能级原子主方程和激光通道主方程的解之间的超对称性. 物理学报, 2016, 65(3): 030301. doi: 10.7498/aps.65.030301
    [7] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [8] 范洪义, 何锐. 介观RLC电路的密度矩阵的量子耗散. 物理学报, 2014, 63(11): 110301. doi: 10.7498/aps.63.110301
    [9] 党文佳, 曾晓东, 冯喆珺. 目标粗糙对合成孔径激光雷达回波的退相干效应. 物理学报, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204
    [10] 张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云. 光子增减叠加相干态在热环境中的退相干. 物理学报, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [11] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [12] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干. 物理学报, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [13] 周军, 袁好, 宋军. 相位扩散通道中密度算符相关态的时间演化. 物理学报, 2012, 61(3): 030302. doi: 10.7498/aps.61.030302
    [14] 施振刚, 文伟, 谌雄文, 向少华, 宋克慧. 双量子点电荷比特的散粒噪声谱. 物理学报, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [15] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [16] 刘绍鼎, 程木田, 周慧君, 李耀义, 王取泉, 薛其坤. 双激子和浸润层泄漏以及俄歇俘获对量子点Rabi振荡衰减的影响. 物理学报, 2006, 55(5): 2122-2127. doi: 10.7498/aps.55.2122
    [17] 吴俊林, 黄新民. 非广延反应扩散系统的广义主方程. 物理学报, 2006, 55(12): 6234-6237. doi: 10.7498/aps.55.6234
    [18] 王 丽, 胡响明. 耦合场线宽:抑制电磁诱导吸收. 物理学报, 2004, 53(8): 2551-2555. doi: 10.7498/aps.53.2551
    [19] 刘彦欣, 王永昌, 杜少毅. 单电子三势垒隧穿结I-V特性研究. 物理学报, 2004, 53(8): 2734-2740. doi: 10.7498/aps.53.2734
    [20] 邓文基. 推广的EZ模型中的普适性行为. 物理学报, 2002, 51(6): 1171-1174. doi: 10.7498/aps.51.1171
计量
  • 文章访问数:  5725
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-30
  • 修回日期:  2016-02-29
  • 刊出日期:  2016-06-05

/

返回文章
返回