搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响

刘恩华 陈钊 温晓莉 陈长乐

引用本文:
Citation:

顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响

刘恩华, 陈钊, 温晓莉, 陈长乐

Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film

Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le
PDF
导出引用
  • 界面效应在提升异质结构材料的多铁性能方面有着重要的作用. 本文采用脉冲激光沉积技术在SrTiO3(STO)基片上制备了Bi0.8Ba0.2FeO3(BBFO)/La2/3Sr1/3MnO3(LSMO)异质结. X-射线衍射图谱表明异质结呈现单相外延生长, 利用高分辨透射电镜进一步证实了BBFO为四方相结构. X-射线光电子能谱证实异质结中只存在Fe3+ 离子, 没有产生价态的变化, 揭示了异质结铁电和铁磁性的增强与BBFO/LSMO的界面有关. 同时, 测试了磁电阻(MR)和磁介电(MD), 当磁场强度为0.8 T, 温度为70 K时, MR约为-42.2%, MD约为21.2%. 并且发现在180 K时出现磁相的转变. 实验结果揭示出异质界面效应在提升材料的多铁性和磁电耦合效应方面具有超常的优点, 是加快多铁材料实际应用的有效途径.
    Multiferroics simultaneously exhibit several order parameters such as ferroelectricity and antiferromagnetism, representing an appealing class of multifunctional material. As the only multiferroics above room temperature, BiFeO3 (BFO) becomes an attractive choice for a wide variety of applications in the areas of sensors and spintronic devices. The coexistence of several order parameters brings about novel physical phenomena, for example, the magnetoelectric coupling effect. It allows the reversal of ferroelectric polarization by a magnetic field or the control of magnetic order parameter by an electric field. Heterostructure interface plays an important role in enhancing the ferroelectric and magnetic properties of multiferroic materials. Furthermore, the magnetoelectric coupling at the interface between the antiferromagnetism BFO and a ferromagnetic film has the close relation with achieving a functional multiferroic-ferromagnetic heterostructure. In order to determine the relationship between the multiferroic property and the interface experimentally, we prepare the Bi0.8Ba0.2FeO3(BBFO)/La2/3Sr1/3MnO3(LSMO) heterostructure on an SrTiO3(STO) substrate by pulsed laser deposition, and the structure characteristics and ferroelectric and magnetic properties are investigated. X-ray diffraction analysis shows that BBFO and LSMO films are epitaxially grown as single-phase. The further study by high-resolution transmission electron microscopy determines that the BBFO film has a tetragonal structure. The ferroelectric and magnetic measurements show that the magnetic and the ferroelectric properties are simultaneously improved, and the maximum values of the remnant polarization (2Pr) and the saturation magnetization of the heterostructure at room temperature are about 3.25 C/cm2 and 112 emu/cm3, respectively. The reasons for enhancing the ferroelectric and ferromagnetic properties of heterostructure are demonstrated by X-ray photoelectron spectrum that shows being unrelated to the valence states of Fe element. On the contrary, interface effect plays a major role. In addition, the magnetic resistivities and dielectric properties of BBFO/LSMO heterostructure are investigated at temperatures in a range of 50 K to 300 K, finding that magnetoresistance (MR) and magnetodielectric (MD) are respectively about -42.2% and 21.9% at 70 K with a magnetic field of 0.8 T, and the transition of magnetic phase takes place near 180 K. Furthermore, the temperature dependences of magnetodielectric and magnetoloss (ML) present opposite tendencies, suggesting that magnetodielectric is caused by Maxwell-Wagner effect and the magnetoresistance. Experimental results reveal that heterogeneous interface effect shows the exceptional advantages in enhancing multiferroic property and magnetoelectric coupling effect of complex heterostructure material. It is an effective way to speed up the application of multiferroic materials.
      通信作者: 陈钊, zhaoch17@nwpu.edu.cn,zhaoch17@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 61078057, 61471301)、陕西省自然科学基金(批准号: 2015JM5259, 2011GM6013)、西北工业大学基础科研基金(批准号: JC20110270, 3102014JCQ01029)、兰州大学磁学与磁性材料教育部重点实验室开放课题(批准号: LZUMMM2013001, LZUMMM2014007)、国家留学基金委(批准号: 201303070058)和高等学校博士学科点专项科研基金(批准号:20126102110045)资助的课题.
      Corresponding author: Chen Zhao, zhaoch17@nwpu.edu.cn,zhaoch17@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61078057, 61471301), Natural Science Foundation of Shannxi Province, China (Grant Nos. 2015JM5259, 2011GM6013), Foundation for Fundamental Research, Northwestern Polytechnical University, China (Grant Nos. JC20110270, 3102014JCQ01029), Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, China (Grant Nos. LZUMMM2013001, LZUMMM2014007), the China Scholarship Council (Grant No. 201303070058), and the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20126102110045).
    [1]

    Bell A J 2008 J. Eur. Ceram. Soc. 28 1307

    [2]

    Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthlmy A, Bibes M 2011 Nat. Mater. 10 753

    [3]

    Xu Y, Zhang Z Y, Jin Z M, Pan Q F, Lin X, Ma G H, Cheng Z X 2014 Acta Phys. Sin. 63 117801 (in Chinese) [徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥 2014 物理学报 63 117801]

    [4]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [5]

    Lebeugle D, Colson D, Forget A, Viret M, Bataille A M, Gukasov A 2008 Phys. Rev. Lett. 100 227602

    [6]

    Annapu Reddy V, Pathak N, Nath R 2013 Solid State Commun. 171 40

    [7]

    Qi X D, Dho J, Tomov R, Blamire M G, MacManus-Driscoll J L {2005 Appl. Phys. Lett. 86 2903

    [8]

    Hwang J S, Cho J Y, Park S Y, Yoo Y J, Yoo P S, Lee B W, Lee Y P 2015 Appl. Phys. Lett. 106 062902

    [9]

    Costa L V, Deus R C, Foschini C R, Longo E, Cilense M, Simes A Z 2014 Mater. Chem. Phys. 144 476

    [10]

    Seidel J, Trassin M, Zhang Y, Maksymovych P, Uhlig T, Pan X 2014 Adv. Mater. 26 4376

    [11]

    Song G L, Su J, Zhang N, Chang F G {2015 Acta Phys. Sin. 64 088101 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 物理学报 64 088101]

    [12]

    Trassin M, Clarkson J D, Bowden S R, Liu J, Heron J T, Paull R J, Arenholz E, Pierce D T, Unguris J 2013 Phys. Rev. B 87 134426

    [13]

    Singamaneni S R, Prater J T, Nori S, Kumar D, Narayan J 2015 J. Appl. Phys. 117 17D908

    [14]

    Deng H L, Zhang M, Wei J Z, Chu S J, Du M Y, Yan H {2015 Solid-State Electron. 109 73

    [15]

    Li M, Ning M, Ma Y, Wu Q, Ong C K 2007 J. Phys. D 40 1603

    [16]

    Yang J C, Huang Y L, He Q, Chu Y H 2014 J. Appl. Phys. 116 066801

    [17]

    Ba H, Gajek M, Bibes M, Barthlmy A 2008 J. Phys.: Condens. Matter 20 434221

    [18]

    Yan F, Xing G Z, Li L 2014 Appl. Phys. Lett. 104 132904

    [19]

    Yin L H, Song W H, Jiao X L, Wu W B, Zhu X B, Sun Y P 2009 J. Phys. D: Appl. Phys. 42 205402

    [20]

    Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, Ramasse Q M 2010 Phys. Rev. Lett. 105 027201

    [21]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Spaldin N A 2003 Science 299 1721

    [22]

    Das R, Mandal K {2012 J. Magn. Magn. Mater. 324 1914

    [23]

    Wang D H, Goh W C, Ning M, Ong C K {2006 Appl. Phys. Lett. 88 2907

    [24]

    Yang C, Jiang J S, Qian F Z, Jiang D M, Wang C M, Zhang W G {2010 J. Alloys Compd. 507 30

    [25]

    Anderson P W 1950 Phys. Rev. 79 350

    [26]

    Rao S S, Prater J T, Wu F, Shelton C T, Maria J P, Narayan J 2013 Nano Lett. 13 5814

    [27]

    Singh S K, Ishiwara H, Maruyama K 2006 J. Appl. Phys. 100 064102

    [28]

    Wen X L, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Chen C L 2014 Chin. Phys. B 23 117703

    [29]

    Liu Y K, Yao Y P, Dong S N, Yang S W, Li X G 2012 Phys. Rev. B 86 075113

    [30]

    Majumdar S, Dijken S V {2013 J. Phys. D: Appl. Phys. 47 034010

    [31]

    Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H 2005 Phys. Rev. B 71 184428

    [32]

    Chen P, Xing D Y, Du Y W 2001 Phys. Rev. B 64 104402

    [33]

    Scott J F, Singh M K, Katiyar R S 2008 J. Phys. Condens. Matter 20 322203

    [34]

    Mandal P R, Nath T K 2014 J. Alloys Compd. 599 71

    [35]

    Ren P, Liu P, Xia B, Zou X, You L, Wang J L, Wang L 2012 AIP Adv. 2 022133

    [36]

    Singh H, Kumar A, Yadav K L {2011 Mater. Sci. Eng. B 176 542

    [37]

    Uniyal P, Yadav K L 2012 J. Alloys Compd. 511 149

    [38]

    Liu Y K, Yao Y P, Dong S N, Jiang T, Yang S W, Li X G 2012 Thin Solid Films 520 5775

  • [1]

    Bell A J 2008 J. Eur. Ceram. Soc. 28 1307

    [2]

    Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthlmy A, Bibes M 2011 Nat. Mater. 10 753

    [3]

    Xu Y, Zhang Z Y, Jin Z M, Pan Q F, Lin X, Ma G H, Cheng Z X 2014 Acta Phys. Sin. 63 117801 (in Chinese) [徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥 2014 物理学报 63 117801]

    [4]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [5]

    Lebeugle D, Colson D, Forget A, Viret M, Bataille A M, Gukasov A 2008 Phys. Rev. Lett. 100 227602

    [6]

    Annapu Reddy V, Pathak N, Nath R 2013 Solid State Commun. 171 40

    [7]

    Qi X D, Dho J, Tomov R, Blamire M G, MacManus-Driscoll J L {2005 Appl. Phys. Lett. 86 2903

    [8]

    Hwang J S, Cho J Y, Park S Y, Yoo Y J, Yoo P S, Lee B W, Lee Y P 2015 Appl. Phys. Lett. 106 062902

    [9]

    Costa L V, Deus R C, Foschini C R, Longo E, Cilense M, Simes A Z 2014 Mater. Chem. Phys. 144 476

    [10]

    Seidel J, Trassin M, Zhang Y, Maksymovych P, Uhlig T, Pan X 2014 Adv. Mater. 26 4376

    [11]

    Song G L, Su J, Zhang N, Chang F G {2015 Acta Phys. Sin. 64 088101 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 物理学报 64 088101]

    [12]

    Trassin M, Clarkson J D, Bowden S R, Liu J, Heron J T, Paull R J, Arenholz E, Pierce D T, Unguris J 2013 Phys. Rev. B 87 134426

    [13]

    Singamaneni S R, Prater J T, Nori S, Kumar D, Narayan J 2015 J. Appl. Phys. 117 17D908

    [14]

    Deng H L, Zhang M, Wei J Z, Chu S J, Du M Y, Yan H {2015 Solid-State Electron. 109 73

    [15]

    Li M, Ning M, Ma Y, Wu Q, Ong C K 2007 J. Phys. D 40 1603

    [16]

    Yang J C, Huang Y L, He Q, Chu Y H 2014 J. Appl. Phys. 116 066801

    [17]

    Ba H, Gajek M, Bibes M, Barthlmy A 2008 J. Phys.: Condens. Matter 20 434221

    [18]

    Yan F, Xing G Z, Li L 2014 Appl. Phys. Lett. 104 132904

    [19]

    Yin L H, Song W H, Jiao X L, Wu W B, Zhu X B, Sun Y P 2009 J. Phys. D: Appl. Phys. 42 205402

    [20]

    Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, Ramasse Q M 2010 Phys. Rev. Lett. 105 027201

    [21]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Spaldin N A 2003 Science 299 1721

    [22]

    Das R, Mandal K {2012 J. Magn. Magn. Mater. 324 1914

    [23]

    Wang D H, Goh W C, Ning M, Ong C K {2006 Appl. Phys. Lett. 88 2907

    [24]

    Yang C, Jiang J S, Qian F Z, Jiang D M, Wang C M, Zhang W G {2010 J. Alloys Compd. 507 30

    [25]

    Anderson P W 1950 Phys. Rev. 79 350

    [26]

    Rao S S, Prater J T, Wu F, Shelton C T, Maria J P, Narayan J 2013 Nano Lett. 13 5814

    [27]

    Singh S K, Ishiwara H, Maruyama K 2006 J. Appl. Phys. 100 064102

    [28]

    Wen X L, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Chen C L 2014 Chin. Phys. B 23 117703

    [29]

    Liu Y K, Yao Y P, Dong S N, Yang S W, Li X G 2012 Phys. Rev. B 86 075113

    [30]

    Majumdar S, Dijken S V {2013 J. Phys. D: Appl. Phys. 47 034010

    [31]

    Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H 2005 Phys. Rev. B 71 184428

    [32]

    Chen P, Xing D Y, Du Y W 2001 Phys. Rev. B 64 104402

    [33]

    Scott J F, Singh M K, Katiyar R S 2008 J. Phys. Condens. Matter 20 322203

    [34]

    Mandal P R, Nath T K 2014 J. Alloys Compd. 599 71

    [35]

    Ren P, Liu P, Xia B, Zou X, You L, Wang J L, Wang L 2012 AIP Adv. 2 022133

    [36]

    Singh H, Kumar A, Yadav K L {2011 Mater. Sci. Eng. B 176 542

    [37]

    Uniyal P, Yadav K L 2012 J. Alloys Compd. 511 149

    [38]

    Liu Y K, Yao Y P, Dong S N, Jiang T, Yang S W, Li X G 2012 Thin Solid Films 520 5775

  • [1] 胡聚罡, 贾振宇, 李绍春. 碳化硅衬底上外延双层石墨烯的电输运性质. 物理学报, 2022, 71(12): 127204. doi: 10.7498/aps.71.20220062
    [2] 李婧, 丁帅帅, 胡文平. 有机自旋电子器件中的自旋界面研究进展. 物理学报, 2022, 71(6): 067201. doi: 10.7498/aps.71.20211786
    [3] 张艺玮, 宋恒博, 李小燕, 孙丽, 刘晓莹, 寇朝霞, 张栋, 费红阳, 赵志斌, 翟亚. 不同厚度Cr中间层对Gd/FeCo薄膜磁电阻效应转变的影响. 物理学报, 2022, 71(21): 217501. doi: 10.7498/aps.71.20220472
    [4] 息剑峰, 李宝河, 刘丹, 李熊, 耿爱丛, 李笑. LaAlO3/SrTiO3界面增强光伏效应. 物理学报, 2021, 70(8): 086802. doi: 10.7498/aps.70.20201330
    [5] 陈东, 余本海. 外延应变和铁电极化双重调控LaMnO3/BaTiO3超晶格的磁性. 物理学报, 2020, 69(22): 226301. doi: 10.7498/aps.69.20200839
    [6] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [7] 刘小强, 吴淑雅, 朱晓莉, 陈湘明. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性. 物理学报, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [8] 王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐. BaTiO3/La0.67Sr0.33MnO3-复合薄膜的磁致电极化和磁介电特性研究. 物理学报, 2018, 67(1): 017701. doi: 10.7498/aps.67.20172019
    [9] 何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xEux)4/3Sr5/3Mn2O7(x=0, 0.15)的磁性和电性研究. 物理学报, 2014, 63(14): 147503. doi: 10.7498/aps.63.147503
    [10] 王美娜, 李英, 王天兴, 刘国栋. 正交多铁性材料DyMnO3的磁性质研究. 物理学报, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [11] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究. 物理学报, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [12] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [13] 黄秀峰, 潘礼庆, 李晨曦, 王强, 孙刚, 陆坤权. 低温下二氧化硅介孔内水的振动性质. 物理学报, 2012, 61(13): 136801. doi: 10.7498/aps.61.136801
    [14] 许涌, 蔡建旺. 几种元素的界面插层对Ta/NiFe/Ta的各向异性磁电阻效应的影响. 物理学报, 2011, 60(11): 117308. doi: 10.7498/aps.60.117308
    [15] 秦伟, 张玉滨, 解士杰. 有机Co/Alq3/La1-xSrxMnO3(LSMO)器件磁电阻的温度效应研究. 物理学报, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [16] 江阔. Co掺杂对铁磁金属La0.8Sr0.2MnO3磁电阻影响机理. 物理学报, 2010, 59(4): 2801-2807. doi: 10.7498/aps.59.2801
    [17] 马静, 施展, 林元华, 南策文. 准2-2型磁电多层复合材料的磁电性能. 物理学报, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [18] 彭先德, 朱涛, 王芳卫. Co掺杂的ZnO稀磁半导体块体的退火热处理研究. 物理学报, 2009, 58(5): 3274-3279. doi: 10.7498/aps.58.3274
    [19] 许小勇, 钱丽洁, 胡经国. 铁磁多层膜中的力致磁电阻效应. 物理学报, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  4705
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2016-03-18
  • 刊出日期:  2016-06-05

/

返回文章
返回