搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四瓣高斯光束的Gyrator变换性质和矩形空心光束的产生

龚宁 朱开成 夏辉

引用本文:
Citation:

四瓣高斯光束的Gyrator变换性质和矩形空心光束的产生

龚宁, 朱开成, 夏辉

Gyrator transform of four-petal Gaussian beam and generation of rectangular hollow beam

Gong Ning, Zhu Kai-Cheng, Xia Hui
PDF
导出引用
  • 基于Gyrator变换, 推导了四瓣高斯光束场分布的解析表达式, 研究了四瓣高斯光束通过Gyrator变换后的光强分布和相位分布. 结果表明: 在Gyrator变换过程中, 四瓣高斯光束能够转换为具有光涡旋的矩形空心光束, 在获得矩形空心光束时其四顶角处光束强度最强, 而四条边上的光束强度分布几乎是均匀的. 对影响矩形空心光束强度和相位分布的光束参数和变换角进行了详细的分析, 发现光束阶数不同, 产生不同类型的空心光束; Gyrator变换的变换角则影响空心光束能量分布; 空心光束亮环的大小由四瓣高斯光束的束腰宽度决定, 束腰宽度越大, 矩形空心光束的宽度越小.
    Four-petal Gaussian beam is a special type of Gaussian beam, and its propagation properties are widely used in micro optics, optical communication and splitting technology. Recently, the generations and the properties of different types of hollow beams have become a hot research topic, such as research on hollow optical vortex beams. The Gyrator transform can be used to fulfill the mode conversion of laser beam. In this paper, based on the Gyrator transform, the analytical expression of four-petal Gaussian beam passing through such a transform system is derived, and the intensity distribution and the corresponding phase distribution associated with the transforming four-petal Gaussian beam are analyzed by numerical simulations. It is found that the four-petal Gaussian beam can be transformed into rectangular hollow beam by Gyrator transform, under the appropriate conditions of the beam order, the beam parameter, the transform angle of Gyrator transform, and the waist width. For the beam order n=m=3, the transform angle of Gyrator transform = 0.4133, the beam parameter K=30, and the waist width = 0.9, the rectangular hollow optical vortex beams can be obtained. Under such conditions, the maximum intensities appear in the four corners, and they are almost uniform on the four sides. The effects of the beam parameters, the transform angle, and the beam order on the distributions of intensity and phase of the rectangular hollow beam are analyzed in detail. The numerical results show that for the beam parameter K10, the rectangular hollow beam always is obtained, and for a lager beam parameter, the intensity distribution of the rectangular hollow beam is more uniform. Different beam order generates different type of hollow beam. For example, for n=m = 2, = 1.2, K = 30, and = 0.5409, a new strange circular hollow beam with solid circular nucleus can be obtained. The transform angle of Gyrator transform has a significant effect on the energy distribution of the hollow beam. When the transform angle changes in a small range, the uniformity of the intensity distribution of the rectangular hollow beam is lost. The bigger the transform angle change, the more serious the loss of uniformity of the hollow beam intensity is. The size of the hollow beam bright ring is determined by the waist width of the four-petal Gaussian beam: the larger the waist width, the smaller the bright ring is. The results further enriches the applications of Gyrator transform system and the four-petal Gaussian beam in the beam shaping.
      通信作者: 夏辉, xhui73@csu.edu.cn
      Corresponding author: Xia Hui, xhui73@csu.edu.cn
    [1]

    Rodrigo J A, Alieva T, Calvo M L 2007 Opt. Soc. Am. A 24 3135

    [2]

    Rodrigo J A, Alieva T, Calvo M L 2007 Opt. Express 15 2190

    [3]

    Rodrigo J A, Alieva T, Calvo M L 2007 Opt. Commun. 278 279

    [4]

    Abuturab M R 2015 Opt. Commun. 343 57

    [5]

    Tang H Q, Zhu K C 2013 Opt. Laser Tech. 54 68

    [6]

    Zhu K C, Tang H Q, Zheng X J 2014 Acta Phys. Sin. 63 104210 (in Chinese) [朱开成, 唐慧琴, 郑晓娟 2014 物理学报 63 104210]

    [7]

    Xie X X, Wang S C, Wu F T 2015 Acta Phys. Sin. 64 124201 (in Chinese) [谢晓霞, 王硕琛, 吴逢轶 2015 物理学报 64 124201]

    [8]

    Li H R, Yin J P 2010 Chin. Phys. B 19 083204

    [9]

    Shi J Z, Yang S, Zou Y Q, Ji X M, Yin J P 2015 Acta Phys. Sin. 64 184202 (in Chinese) [施建珍, 杨深, 邹亚琪, 纪宪明, 印建平 2015 物理学报 64 184202]

    [10]

    Sun Q G, Zhou K Y, Fang G Y, Zhang G Q, Liu Z J, Liu S T 2012 Opt. Express 20 9682

    [11]

    Zhao C L, Lu X H, Wang L G, Chen H 2008 Opt. Laser Tech. 40 575

    [12]

    Cai Y J, Zhang L 2006 J. Opt. Soc. Am. B 23 1398

    [13]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [14]

    Shi J C, Xu S W, Ji X M, Ying J P 2015 Acta Opt. Sin. 35 314 (in Chinese) [施建珍, 徐淑武, 纪宪明, 印建平 2015 光学学报 35 314]

    [15]

    Long X, Lu K, Zhang Y, Guo J, Li K 2010 Opt. Commun. 283 4586

  • [1]

    Rodrigo J A, Alieva T, Calvo M L 2007 Opt. Soc. Am. A 24 3135

    [2]

    Rodrigo J A, Alieva T, Calvo M L 2007 Opt. Express 15 2190

    [3]

    Rodrigo J A, Alieva T, Calvo M L 2007 Opt. Commun. 278 279

    [4]

    Abuturab M R 2015 Opt. Commun. 343 57

    [5]

    Tang H Q, Zhu K C 2013 Opt. Laser Tech. 54 68

    [6]

    Zhu K C, Tang H Q, Zheng X J 2014 Acta Phys. Sin. 63 104210 (in Chinese) [朱开成, 唐慧琴, 郑晓娟 2014 物理学报 63 104210]

    [7]

    Xie X X, Wang S C, Wu F T 2015 Acta Phys. Sin. 64 124201 (in Chinese) [谢晓霞, 王硕琛, 吴逢轶 2015 物理学报 64 124201]

    [8]

    Li H R, Yin J P 2010 Chin. Phys. B 19 083204

    [9]

    Shi J Z, Yang S, Zou Y Q, Ji X M, Yin J P 2015 Acta Phys. Sin. 64 184202 (in Chinese) [施建珍, 杨深, 邹亚琪, 纪宪明, 印建平 2015 物理学报 64 184202]

    [10]

    Sun Q G, Zhou K Y, Fang G Y, Zhang G Q, Liu Z J, Liu S T 2012 Opt. Express 20 9682

    [11]

    Zhao C L, Lu X H, Wang L G, Chen H 2008 Opt. Laser Tech. 40 575

    [12]

    Cai Y J, Zhang L 2006 J. Opt. Soc. Am. B 23 1398

    [13]

    He Y L, Liu Z X, Liu Y C, Zhou J X, Ke Y G, Luo H L, Wen S C 2015 Opt. Lett. 40 5506

    [14]

    Shi J C, Xu S W, Ji X M, Ying J P 2015 Acta Opt. Sin. 35 314 (in Chinese) [施建珍, 徐淑武, 纪宪明, 印建平 2015 光学学报 35 314]

    [15]

    Long X, Lu K, Zhang Y, Guo J, Li K 2010 Opt. Commun. 283 4586

  • [1] 李尉, 代京京, 温丛阳, 宗梦雅, 李胜南, 王智勇. 利用Gyrator正则变换实现环形激光阵列的Talbot效应. 物理学报, 2023, 72(5): 054208. doi: 10.7498/aps.72.20222412
    [2] 宁效龙, 王志章, 裴春莹, 尹亚玲. 非线性晶体产生的空心光束中大尺寸粒子囚禁与导引. 物理学报, 2018, 67(1): 018701. doi: 10.7498/aps.67.20171571
    [3] 朱洁, 唐慧琴, 李晓利, 刘小钦. 具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生. 物理学报, 2017, 66(16): 164202. doi: 10.7498/aps.66.164202
    [4] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响. 物理学报, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [5] 朱清智, 吴逢铁, 胡润, 冯聪. 空心光束尺寸的精确调控. 物理学报, 2016, 65(18): 184101. doi: 10.7498/aps.65.184101
    [6] 朱洁, 朱开成. 像散正弦-高斯光束的分数傅里叶变换与椭圆空心光束产生. 物理学报, 2016, 65(20): 204204. doi: 10.7498/aps.65.204204
    [7] 姚丽莉, 袁操今, 强俊杰, 冯少彤, 聂守平. 基于gyrator变换和矢量分解的非对称图像加密方法. 物理学报, 2016, 65(21): 214203. doi: 10.7498/aps.65.214203
    [8] 施建珍, 许田, 周巧巧, 纪宪明, 印建平. 用波晶片相位板产生角动量可调的无衍射涡旋空心光束. 物理学报, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [9] 周琦, 陆俊发, 印建平. 可控双空心光束的理论方案及实验研究. 物理学报, 2015, 64(5): 053701. doi: 10.7498/aps.64.053701
    [10] 陈国钧, 周巧巧, 纪宪明, 印建平. 用线偏振光产生可调矢量椭圆空心光束. 物理学报, 2014, 63(8): 083701. doi: 10.7498/aps.63.083701
    [11] 何西, 杜团结, 吴逢铁. 新型发光二极管透镜产生局域空心光束. 物理学报, 2014, 63(7): 074201. doi: 10.7498/aps.63.074201
    [12] 朱开成, 唐慧琴, 郑小娟, 唐英. 广义双曲正弦-高斯光束的Gyrator变换性质和暗空心光束产生. 物理学报, 2014, 63(10): 104210. doi: 10.7498/aps.63.104210
    [13] 程治明, 吴逢铁, 张前安, 郑维涛. 自成像局域空心光束产生的新方法及粒子俘获. 物理学报, 2012, 61(9): 094201. doi: 10.7498/aps.61.094201
    [14] 张前安, 吴逢铁, 郑维涛. 轴棱锥-透镜系统产生局域空心光束中心亮斑的消除. 物理学报, 2012, 61(3): 034205. doi: 10.7498/aps.61.034205
    [15] 程治明, 吴逢铁, 方翔, 范丹丹, 朱健强. 圆顶轴棱锥产生多个局域空心光束. 物理学报, 2012, 61(21): 214201. doi: 10.7498/aps.61.214201
    [16] 张前安, 吴逢铁, 郑维涛, 马亮. 新型锥透镜产生局域空心光束. 物理学报, 2011, 60(9): 094201. doi: 10.7498/aps.60.094201
    [17] 卢文和, 吴逢铁, 马宝田. 环形障碍物-轴棱锥产生局域空心光束. 物理学报, 2010, 59(9): 6101-6105. doi: 10.7498/aps.59.6101
    [18] 马亮, 吴逢铁. 阶变折射率轴棱锥产生局域空心光束. 物理学报, 2010, 59(9): 6096-6100. doi: 10.7498/aps.59.6096
    [19] 罗亚梅, 吕百达. 异常空心光束通过球差光阑透镜的聚焦和在焦区的位相奇异特性. 物理学报, 2009, 58(6): 3915-3922. doi: 10.7498/aps.58.3915
    [20] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
计量
  • 文章访问数:  5593
  • PDF下载量:  343
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 修回日期:  2016-02-25
  • 刊出日期:  2016-06-05

/

返回文章
返回