搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于成像清晰度函数的非球面反射镜位置校正实验研究

周龙峰 张昂 张俊波 樊新龙 魏凌 陈善球 鲜浩

引用本文:
Citation:

基于成像清晰度函数的非球面反射镜位置校正实验研究

周龙峰, 张昂, 张俊波, 樊新龙, 魏凌, 陈善球, 鲜浩

Experimental research of alignment error correction by aspheric mirror based on the function of imaging quality

Zhou Long-Feng, Zhang Ang, Zhang Jun-Bo, Fan Xin-Long, Wei Ling, Chen Shan-Qiu, Xian Hao
PDF
导出引用
  • 在具有双曲面、抛物面或椭圆面反射镜的成像光学系统中, 反射镜的位置误差通常具有对成像质量影响灵敏的特点. 因此, 在该类光学系统装调或工作过程中反射镜位置存在误差时需要对该反射镜进行精确调整. 目前, 反射镜位置校正的方法多基于对系统波前误差的测量, 从而判断其位置误差. 然而在系统工作过程中可能无法进行光学系统的波前测量, 或者需要复杂的光学系统才能实现波前误差的测量. 本文以焦平面图像清晰度作为评价函数, 采用随机并行梯度下降算法对反射镜位置进行调整, 使系统成像质量达到最佳. 针对迭代过程中反射镜位置发生变化时图像偏离探测器靶面而无法探测的问题, 本文采用了一种反射镜垂直光轴平移和旋转相结合的调整方法. 在保证图像位置不变化的条件下对系统像差进行校正. 室内实验验证了该方法具有可行性, 校正后的成像质量达到衍射极限.
    Image definition will be influenced by alignment errors of mirrors in an optical system consisting of hyperbolic, parabolic or ellipse mirrors. The major factors of alignment errors are gravity, wind loads and heat exchange for some optical systems like ground-based telescopes, while vibration and temperature gradient for systems like space telescopes. Larger telescopes are more sensitive to these error sources, which becomes the concerns of researchers. So the alignment errors of mirrors must be corrected in time to keep systems working in best condition. In order to solve the problem, many methods are proposed based on the detection of wave-front errors using wave-front sensors like Hartmann-Shack. However, wave-front sensors may not be used or cause optical systems to be more complicated. For example, multi-fields must be tested when telescope is working. On the one hand, if a wave-front sensor is used, it must be moved around imaging plane, on the other hand, if more wave-front sensors are used, system must be more complicated. So a new method is discussed for alignment error correction by evaluating the quality of spot diagrams based on the using of stochastic parallel gradient descent (SPGD) algorithm. The method considers the performance metric like spot diagram radius as a function of control parameters and then uses the SPGD optimization algorithm to improve the performance metric. The control parameters include positions of mirrors. The iteration process must be used in the right way to control position parameters. If it is not considered, a problem may come up that positions of spot diagrams may be influenced by the iteration. Furthermore, spot diagrams will probably disappear from detectors. Then the radii of spot diagrams are not correct. So a better way is put forward by the combination of de-center and tilt of mirrors. The way ensures that the position error produced by de-center and tilt are compensated for. A formula is provided in this paper to give the relationship between them. Based on the analysis, an optical system is designed to verify the conclusion. The SPGD algorithm is achieved by computer programming and the position of the mirror is controlled by a hexapod. Firstly, the problem is verified that the spot diagram will disappear from the detector with a normal iteration process. Then the new way is implemented. In the iteration process, the spot diagram is always in the center of the detectors. In order to prove the feasibility of the method, three different alignment errors are tested and all of them each give an Airy disk finally. The experiment can provide reference for engineering practice.
      通信作者: 鲜浩, xianhao@ioe.ac.cn
    • 基金项目: 中国科学院空间科学战略性先导科技专项(批准号: XDA04060902)资助的课题.
      Corresponding author: Xian Hao, xianhao@ioe.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA04060902).
    [1]

    Che C C, Li Y C, Fan X W, Ma Z, Hu Y M 2008 Acta Photon. Sin. 37 1630 (in Chinese) [车驰骋, 李英才, 樊学武, 马臻, 胡永明 2008 光子学报 37 1630]

    [2]

    McLeod B A 1996 Publications of the Astronomical Society of the Pacific 108 217

    [3]

    Noethe L, Guisard S 2000 SPIE 4003 382

    [4]

    Yang H S, Lee Y W, Kim E D, Choi Y W 2004 SPIE 5528 334

    [5]

    Raich A, Hill J M, Biddick C J, Miller D L, Leibold T 2008 SPIE 7012 70121L

    [6]

    Shi G W, Zhang X, Zhang Y, Wu Y X, Zhang J Z 2011 J. Appl. Opt. 32 3 (in Chinese) [史广维, 张新, 张鹰, 伍雁雄, 张继真2011 应用光学32 3]

    [7]

    Kim S H, Yang H S, Lee Y W, Kim S W 2007 Opt. Exp. 15 5059

    [8]

    Luna E 1999 Publications of the Astronomical Society of the Pacific 111 104

    [9]

    Sun J W, Chen T, Wang J L, Yang F 2011 Opt. Precision Eng. 19 728 (in Chinese) [孙敬伟, 陈涛, 王建立, 杨飞2011 光学精密工程19 728]

    [10]

    Zhou L F, Zhang A, Zhang J B, Xian H 2015 Acta Opt. Sin. 35 6 (in Chinese) [周龙峰, 张昂, 张俊波, 鲜浩2015 光学学报35 6]

    [11]

    Wilson R N 1996 Reflecting Telescope Optics I (Berlin Heidelberg: Springer-Verlag) pp265288

    [12]

    Muller R A, Buffington A 1974 Opt. Soc. Am. 64 1200

    [13]

    Vorontsov M A, Carhart G W 1997 Opt. Lett. 22 907

  • [1]

    Che C C, Li Y C, Fan X W, Ma Z, Hu Y M 2008 Acta Photon. Sin. 37 1630 (in Chinese) [车驰骋, 李英才, 樊学武, 马臻, 胡永明 2008 光子学报 37 1630]

    [2]

    McLeod B A 1996 Publications of the Astronomical Society of the Pacific 108 217

    [3]

    Noethe L, Guisard S 2000 SPIE 4003 382

    [4]

    Yang H S, Lee Y W, Kim E D, Choi Y W 2004 SPIE 5528 334

    [5]

    Raich A, Hill J M, Biddick C J, Miller D L, Leibold T 2008 SPIE 7012 70121L

    [6]

    Shi G W, Zhang X, Zhang Y, Wu Y X, Zhang J Z 2011 J. Appl. Opt. 32 3 (in Chinese) [史广维, 张新, 张鹰, 伍雁雄, 张继真2011 应用光学32 3]

    [7]

    Kim S H, Yang H S, Lee Y W, Kim S W 2007 Opt. Exp. 15 5059

    [8]

    Luna E 1999 Publications of the Astronomical Society of the Pacific 111 104

    [9]

    Sun J W, Chen T, Wang J L, Yang F 2011 Opt. Precision Eng. 19 728 (in Chinese) [孙敬伟, 陈涛, 王建立, 杨飞2011 光学精密工程19 728]

    [10]

    Zhou L F, Zhang A, Zhang J B, Xian H 2015 Acta Opt. Sin. 35 6 (in Chinese) [周龙峰, 张昂, 张俊波, 鲜浩2015 光学学报35 6]

    [11]

    Wilson R N 1996 Reflecting Telescope Optics I (Berlin Heidelberg: Springer-Verlag) pp265288

    [12]

    Muller R A, Buffington A 1974 Opt. Soc. Am. 64 1200

    [13]

    Vorontsov M A, Carhart G W 1997 Opt. Lett. 22 907

  • [1] 周阳, 张红伟, 钟菲, 郭树旭. 基于自适应阈值方法实现迭代降噪鬼成像. 物理学报, 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [2] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [3] 魏政鸿, 云峰, 丁文, 黄亚平, 王宏, 李强, 张烨, 郭茂峰, 刘硕, 吴红斌. 低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究. 物理学报, 2015, 64(12): 127304. doi: 10.7498/aps.64.127304
    [4] 马长链, 黄永清, 段晓峰, 任晓敏, 王琦, 王俊, 张霞, 蔡世伟. 一种设计环形汇聚光栅反射镜的新方法. 物理学报, 2014, 63(24): 240702. doi: 10.7498/aps.63.240702
    [5] 丁晶新, 方银飞, 郭超修, 杨岚, 夏勇, 尹亚玲, 印建平. 基于表面等离激元场的分子反射镜的理论研究. 物理学报, 2014, 63(21): 213701. doi: 10.7498/aps.63.213701
    [6] 廖宏宇, 马晓燠, 郭友明, 饶长辉, 魏凯. 基于AR模型搜索迭代算法的望远镜跟踪误差分析. 物理学报, 2014, 63(17): 179501. doi: 10.7498/aps.63.179501
    [7] 于万波, 赵斌. 曲面迭代混沌特性研究. 物理学报, 2014, 63(12): 120502. doi: 10.7498/aps.63.120502
    [8] 陈应天, 何祚庥. 用于轴对称的两级光学聚光器的非成像二次反射镜. 物理学报, 2013, 62(13): 134209. doi: 10.7498/aps.62.134209
    [9] 于万波, 周洋. 空间单位区域双二次有理贝赛尔曲面混沌特性研究. 物理学报, 2013, 62(22): 220501. doi: 10.7498/aps.62.220501
    [10] 周斌武, 吴学成, 吴迎春, 阳静, Gérard Gréhan, 岑可法. 数字显微全息中记录参数对颗粒测量影响的数值模拟. 物理学报, 2013, 62(20): 204203. doi: 10.7498/aps.62.204203
    [11] 关庆丰, 吕鹏, 王孝东, 万明珍, 顾倩倩, 陈波. 质子辐照下Mo/Si多层膜反射镜的微观结构状态. 物理学报, 2012, 61(1): 016107. doi: 10.7498/aps.61.016107
    [12] 吕金光, 梁静秋, 梁中翥. 多级反射镜阵列Monte Carlo法误差合成与统计分析. 物理学报, 2012, 61(22): 220701. doi: 10.7498/aps.61.220701
    [13] 安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平. 反射镜双程放大对类氖锗软X射线激光的输出影响研究. 物理学报, 2011, 60(10): 104207. doi: 10.7498/aps.60.104207
    [14] 王波, 梁中翥, 孔延梅, 梁静秋, 付建国, 郑莹, 朱万彬, 吕金光, 王维彪, 裴舒, 张军. 用于微型光谱仪的硅基多级微反射镜设计与制作研究. 物理学报, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [15] 胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤. 基于布拉格反射镜的X射线多色单能成像谱仪. 物理学报, 2009, 58(9): 6397-6402. doi: 10.7498/aps.58.6397
    [16] 李 铭, 张 彬, 戴亚平, 王 韬, 范正修, 黄 伟. 用于钕玻璃啁啾脉冲放大系统光谱整形的多层介质膜反射镜. 物理学报, 2008, 57(8): 4898-4903. doi: 10.7498/aps.57.4898
    [17] 魏 强, 刘 海, 何世禹, 郝小鹏, 魏 龙. 质子辐照铝膜反射镜的慢正电子湮没研究. 物理学报, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
    [18] 曹念文, 刘文清, 张玉钧. 偏振成像技术提高成像清晰度、成像距离的定量研究. 物理学报, 2000, 49(1): 61-66. doi: 10.7498/aps.49.61
    [19] 张幼文. 45°扫描反射镜的静平衡和动平衡设计. 物理学报, 1979, 28(2): 183-200. doi: 10.7498/aps.28.183
    [20] 张家騄. 音节清晰度与音位清晰度之间的统计关系. 物理学报, 1974, 23(5): 17-22. doi: 10.7498/aps.23.17-2
计量
  • 文章访问数:  5386
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-31
  • 修回日期:  2016-04-11
  • 刊出日期:  2016-07-05

/

返回文章
返回