搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辐射致折射率变化用于MeV级脉冲辐射探测的初步研究

彭博栋 宋岩 盛亮 王培伟 黑东炜 赵军 李阳 张美 李奎念

引用本文:
Citation:

辐射致折射率变化用于MeV级脉冲辐射探测的初步研究

彭博栋, 宋岩, 盛亮, 王培伟, 黑东炜, 赵军, 李阳, 张美, 李奎念

Research on MeV pulsed radiation detection based on refractive index modulaiton

Peng Bo-Dong, Song Yan, Sheng Liang, Wang Pei-Wei, Hei Dong-Wei, Zhao Jun, Li Yang, Zhang Mei, Li Kui-Nian
PDF
导出引用
  • MeV级脉冲辐射的高时间分辨测量是惯性约束核聚变诊断领域迫切需要解决的难题,国际上尚无成熟的解决方案. 利用脉冲辐射对半导体折射率的超快调制效应,有望建立新的解决方案. 为研究体材料半导体折射率对MeV级脉冲辐射的响应规律,分析了系统输出与入射辐射强度的对应关系,分析了基于半导体折射率变化测量MeV级脉冲辐射系统的时间分辨的影响因素. 基于自由载流子折射率调制原理,建立了半导体材料在MeV级脉冲辐射作用下折射率调制测量系统,整个系统的时间分辨1 ns. 在最大能量为0.2 MeV的电子束和X射线束轰击下,本征GaAs折射率恢复时间约30 ns,比可见光激发下要长,分析其原因是高能激发下GaAs内部陷阱参与了载流子复合过程. X射线光子束轰击下,折射率建立时间比电子束轰击下长,光子沉积能量产生过剩载流子的时间过程可达到ns量级. 基于建立的系统和分析方法,可对其他半导体在伽马脉冲辐射或电子束辐射作用下折射率变化开展系统的研究,为建立实际的可用于MeV级脉冲辐射测量的快响应探测系统奠定了基础.
    High time resolution detecting systems for MeV pulsed radiation are essential for inertial confinement fusion diagnostics. Traditional detection of system time resolution is restricted by cable bandwidth. Based on recording excess carrier dynamics in semiconductors, a new detecting mechanism, called RadOptic, was developed by Lawrence Livermore National Laboratory (LLNL). The variation of intensity of pulsed radiation with time was converted into the variation of intensity of infrared laser probe by using this mechanism. The sensing material was InGaAsP quantum wells with severalmicrometer thickness. Picosecond time resolution for several keV pulsed radiation has been demonstrated. The reported system is not suitable for MeV pulses due to its low efficiency to MeV photons. Multiple cascaded structure for MeV photon to electron transformation was proposed by LLNL. Applying bulk material with several-hundredmicrometer thickness is an alternative. Based on transient free carrier absorption, a system recording bulk materials' instantaneous refractive index change is established. The system consists of a probe laser, an interferometer module, a signal transmission module and a signal recording module. The probe is a tunable infrared continuous wave laser whose wavelength is ~1453 nm, guided by single mode fiber to the interferometer. The interferometer consists of a single mode fiber head coupled directly with the polished face of a bulk semiconductor. The interference pattern forms by multiple beams reflected from the front face and the back face of the bulk. Part of interference light is coupled to the single mode fiber and forms the output signal. Pulsed radiation will deposit energy and generate excess carriers in the bulk material. The refractive index of the bulk material changes therewith according to the Drude model. The interference pattern and the light coupled to the single mode fiber also change therewith. The signal is transmitted by a long single mode fiber. The signal recording module consists of photoelectric detectors and a digital oscilloscope. The signal generation process and the time resolution of the system are analyzed. Intrinsic GaAs refractive index change is exploited under electron pulses and X ray pulses. The analysis of signal generation process shows that when the excess carriers recombine much faster/much slower than the pulse width, the output signal/output signal differential can be viewed as a measure of intensity variation with time of the incident pulse. For this prototype system, the time resolution is restricted by the digital oscilloscope to 1 GHz. Bulk intrinsic GaAs demonstrates 30 ns refractive index response time, which is longer than the incident pulse width. The differential signal can be viewed as a measure of incident pulse intensity when GaAs is exposed to 1 ns~0.2 MeV electrons pulses. The differential signal width is shorter than the pulse width when GaAs is exposed to 5 ns~0.2 MeV electrons pulses. Auger recombination process may occur in the pulse duration under this situation. The differential signal width is longer than the pulse width when GaAs is exposed to 1 ns~0.2 MeV X ray pulses. The poor signal to noise ratio affects the signal. The excess carrier generation process may be longer than theoretically estimated one under X ray pulse incident situation. The generation process and recombination process of excess carriers in GaAs show very different characteristics compared with optical excitation. The relationship between the system output signal and the incident pulsed radiation depends on the type of the incident radiation. With carefully considering the effects from incident pulse type and transient carriers density, the system can be used to detect ~MeV pulsed radiation. With an upgraded recording module, the system would demonstrate much higher time resolution.
      通信作者: 彭博栋, peng_bodong@163.com
    • 基金项目: 国家自然科学基金(批准号:11505141,11505139)和强脉冲辐射环境模拟与效应国家重点实验室(批准号:SKLIPR1316)资助的课题.
      Corresponding author: Peng Bo-Dong, peng_bodong@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505141, 11505139) and the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect foundation (Grant No. SKLIPR1316).
    [1]

    Vernon S P, Lowry M E, Baker K L, Bennett C V, Celeste J R, Cerjan C, Haynes S, Hernandez V J, Hsing W W, LaCaille G A, London R A, Moran B, Von Wittenau A S, Steele P T, Stewart R E 2012 Rev. Sci. Instrum. 83 10D307

    [2]

    Liang L L, Tian J S, Wang T, Li F L, Gao G L, Wang J F, Wang C, Lu Y, Xu X Y, Cao X B, Wen W L, Xin L W, Liu H L, Wang X {2014 Acta Phys. Sin. 63 060702 (in Chinese) [梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴 2014 物理学报 63 060702]

    [3]

    Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W, Remington B A {2013 Appl. Phys. Lett. 103 15111

    [4]

    Wang B, Bai Y L, Cao W W, Xu P, Liu B Y, Hou Y S, Zhu B L, Hou X 2015 Acta Phys. Sin. 64 200701 (in Chinese) [王博, 白永林, 曹伟伟, 徐鹏, 刘百玉, 缑永胜, 朱炳利, 候洵 2015 物理学报 64 200701]

    [5]

    Peng B D, Song Y, Sheng L, Wang P W, Yuan Y, Hei D W, Zhao J {2014 High Power Laser and Particle Beams 26 114005 (in Chinese) [彭博栋, 宋岩, 盛亮, 王培伟, 袁媛, 黑东炜, 赵军 2014 强激光与粒子束 26 114005]

    [6]

    Herrmann H W, Hoffman N, Wilson D C, Stoeffl W, Dauffy L, Kim Y H, McEvoy A, Young C S, Mack J M, Horsfield C J, Rubery M, Miller E K, Ali Z A 2010 Rev. Sci. Instrum. 81 10D33

    [7]

    Riedel R, Al-Shemmary A, Gensch M, Golz T, Harmand M, Medvedev N, Prandolini M J, Sokolowski-Tinten K, Toleikis S, Wegner U, Ziaja B, Stojanovic N, Tavella F 2013 Nat. Commun. 4 1731

    [8]

    Brown K, Steele P, Curtis A 2014 Proc. of SPIE Radiation Detectors: Systems and Applications XV, San Diego, California, United States, August 17, 2014 p92150H

    [9]

    Li M F 1991 Semiconductor Physics (Beijing: Scientifics Press) p164 (in Chinese) [李名復 1991 半导体物理学 (北京: 科学出版社) 第164页]

    [10]

    Henry C H, Logan R A, Bertness K A 1981 Appl. Phys. 52 4457

    [11]

    London R A, Lowry M E, Vernon S P, Stewart R E 2013 J. Appl. Phys. 114 154510

  • [1]

    Vernon S P, Lowry M E, Baker K L, Bennett C V, Celeste J R, Cerjan C, Haynes S, Hernandez V J, Hsing W W, LaCaille G A, London R A, Moran B, Von Wittenau A S, Steele P T, Stewart R E 2012 Rev. Sci. Instrum. 83 10D307

    [2]

    Liang L L, Tian J S, Wang T, Li F L, Gao G L, Wang J F, Wang C, Lu Y, Xu X Y, Cao X B, Wen W L, Xin L W, Liu H L, Wang X {2014 Acta Phys. Sin. 63 060702 (in Chinese) [梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴 2014 物理学报 63 060702]

    [3]

    Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W, Remington B A {2013 Appl. Phys. Lett. 103 15111

    [4]

    Wang B, Bai Y L, Cao W W, Xu P, Liu B Y, Hou Y S, Zhu B L, Hou X 2015 Acta Phys. Sin. 64 200701 (in Chinese) [王博, 白永林, 曹伟伟, 徐鹏, 刘百玉, 缑永胜, 朱炳利, 候洵 2015 物理学报 64 200701]

    [5]

    Peng B D, Song Y, Sheng L, Wang P W, Yuan Y, Hei D W, Zhao J {2014 High Power Laser and Particle Beams 26 114005 (in Chinese) [彭博栋, 宋岩, 盛亮, 王培伟, 袁媛, 黑东炜, 赵军 2014 强激光与粒子束 26 114005]

    [6]

    Herrmann H W, Hoffman N, Wilson D C, Stoeffl W, Dauffy L, Kim Y H, McEvoy A, Young C S, Mack J M, Horsfield C J, Rubery M, Miller E K, Ali Z A 2010 Rev. Sci. Instrum. 81 10D33

    [7]

    Riedel R, Al-Shemmary A, Gensch M, Golz T, Harmand M, Medvedev N, Prandolini M J, Sokolowski-Tinten K, Toleikis S, Wegner U, Ziaja B, Stojanovic N, Tavella F 2013 Nat. Commun. 4 1731

    [8]

    Brown K, Steele P, Curtis A 2014 Proc. of SPIE Radiation Detectors: Systems and Applications XV, San Diego, California, United States, August 17, 2014 p92150H

    [9]

    Li M F 1991 Semiconductor Physics (Beijing: Scientifics Press) p164 (in Chinese) [李名復 1991 半导体物理学 (北京: 科学出版社) 第164页]

    [10]

    Henry C H, Logan R A, Bertness K A 1981 Appl. Phys. 52 4457

    [11]

    London R A, Lowry M E, Vernon S P, Stewart R E 2013 J. Appl. Phys. 114 154510

  • [1] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展. 物理学报, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [2] 种涛, 傅华, 李涛, 莫建军, 张旭平, 马骁, 郑贤旭. 一种同步研究透明材料折射率和动力学特性的实验方法. 物理学报, 2021, 70(17): 176201. doi: 10.7498/aps.70.20210414
    [3] 孙腾飞, 卢鹏, 卓壮, 张文浩, 卢景琦. 基于单一分光棱镜干涉仪的双通路定量相位显微术. 物理学报, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [4] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展. 物理学报, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [5] 兰斌, 冯国英, 张涛, 梁井川, 周寿桓. 用于透明平板平行度和均匀性测量的单元件干涉仪. 物理学报, 2017, 66(6): 069501. doi: 10.7498/aps.66.069501
    [6] 贺寅竹, 赵世杰, 尉昊赟, 李岩. 跨尺度亚纳米分辨的可溯源外差干涉仪. 物理学报, 2017, 66(6): 060601. doi: 10.7498/aps.66.060601
    [7] 王小飞, 杨华军, 张戈, 张庆礼, 窦仁勤, 丁守军, 罗建乔, 刘文鹏, 孙贵花, 孙敦陆. 自准直法测GdTaO4晶体折射率. 物理学报, 2016, 65(8): 087801. doi: 10.7498/aps.65.087801
    [8] 张旭平, 罗斌强, 种涛, 王桂吉, 谭福利, 赵剑衡, 孙承纬, 刘仓理. 磁驱动准等熵加载下Z切石英晶体的折射率. 物理学报, 2016, 65(4): 046201. doi: 10.7498/aps.65.046201
    [9] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [10] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [11] 朱胜军, 王圣来, 刘琳, 王端良, 李伟东, 黄萍萍, 许心光. 大尺寸磷酸二氢钾晶体的折射率均一性研究. 物理学报, 2014, 63(10): 107701. doi: 10.7498/aps.63.107701
    [12] 满天龙, 万玉红, 江竹青, 王大勇, 陶世荃. 孪生光束干涉法测量光源的空间相干性. 物理学报, 2013, 62(21): 214203. doi: 10.7498/aps.62.214203
    [13] 吴迎春, 吴学成, Sawitree Saengkaew, 姜淏予, 洪巧巧, Gérard Gréhan, 岑可法. 全场彩虹技术测量喷雾浓度及粒径分布. 物理学报, 2013, 62(9): 090703. doi: 10.7498/aps.62.090703
    [14] 花世群, 骆英. 发光光弹性涂层折射率测量方法. 物理学报, 2013, 62(5): 057801. doi: 10.7498/aps.62.057801
    [15] 杨健戈, 孙成林, 杨永波, 高淑琴, 姜永恒, 里佐威. 改变溶液折射率方法研究Fermi共振. 物理学报, 2012, 61(3): 037802. doi: 10.7498/aps.61.037802
    [16] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪. 物理学报, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [17] 李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫. 冲击压缩下Z-切石英的弹性响应特性和折射率. 物理学报, 2010, 59(4): 2691-2696. doi: 10.7498/aps.59.2691
    [18] 张 敏, 林国强, 董 闯, 闻立时. 脉冲偏压电弧离子镀TiO2薄膜的力学与光学性能. 物理学报, 2007, 56(12): 7300-7308. doi: 10.7498/aps.56.7300
    [19] 延凤平, 郑 凯, 王 琳, 李一凡, 龚桃荣, 简水生, 尾形健一, 小池一步, 佐佐诚彦, 井上正崇, 矢野满明. 分子束外延法在Sapphire衬底上生长的Zn1-xMgxO薄膜折射率及厚度的测试. 物理学报, 2007, 56(7): 4127-4131. doi: 10.7498/aps.56.4127
    [20] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
计量
  • 文章访问数:  4619
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-10
  • 修回日期:  2016-05-19
  • 刊出日期:  2016-08-05

/

返回文章
返回