搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部固体填充的水中复杂目标声散射计算与实验

张培珍 李秀坤 范军 王斌

引用本文:
Citation:

局部固体填充的水中复杂目标声散射计算与实验

张培珍, 李秀坤, 范军, 王斌

Acoustic scattering of a complex target with partially solid-filling immersed in water: numerical simulation and experiment

Zhang Pei-Zhen, Li Xiu-Kun, Fan Jun, Wang Bin
PDF
导出引用
  • 利用二维有限元方法研究水中局部填充的带球冠柱体目标声散射特性,所采用的数值方法可高效地实现精细化、宽带、复杂轴对称模型散射声场计算. 根据数值结果解释壳体、填充物以及入射方位对目标散射远场的影响,确定复杂目标散射研究中所必须考虑的重要物理和几何构成. 完成水中悬浮目标自由场声散射实验,收发合置条件下将目标旋转360°接收并测量不同传播路径回波到达时刻得到距离-角度伪彩色图像. 以表面环绕波和“回廊波”产生理论为基础,解释内真空和局部填充模型正横入射时目标散射信号中几何回波和各种弹性波成分产生的机理. 由于固体填充与弹性壳的耦合作用,频率-角度谱的正横方向两侧呈现外八字“碗”形共振曲线. 通过对比,理论计算和实验得到的散射函数关键频谱峰值特性符合较好.
    Resonance peaks of spectral function transformed from echoes are the most important characteristics for distinguishing the different targets. So in frequency domain, response function is usually calculated with small interval in a wider frequency band to satisfy the demand of fast and high precision prediction in practical engineering. According to axis-symmetric model, we use 2 dimensional finite element method to solve the acoustic scattering problem efficiently, even when the scattering target has a large size and complex structure. This article focuses on the explanation of scattering characteristics of a special target, namely, a partially solid-filling cylinder with hemispherical cap and thin-shell. Supposing that the receiver and transmitter are in monostatic arrangement, we calculate scattering strength in far field in a frequency range of 50 Hz-10 kHz, and give pseudo-color image represented by frequency-angle to describe influences of shell, filling and the orientation of the incident wave on scattering properties. According to the numerical results, the following conclusions are given: when the transmitter is facing the hemispherical cap (the cap has a vacuum inside, and the incident angle θ is equal to 0°), the main contribution of scattered wave comes from the shell of target. When θ = 180°, the internal filling inhibits the elastic resonance of the shell, and plays an important role in the total scattering field. Because the acoustic impedance of the shell is much larger than that of the water, elastic resonance of the shell is more difficult to excite than that of the solid filling. While the material property of the solid filling is not significantly different from that of the water, so the elastic resonance of the filling fluctuates relatively fast, and the scattering function vibrates approximately with equal amplitude in a wider frequency band. When θ= 90°, the sound wave is perpendicular to the axis of the cylinder, the shell and the filling work together on scattered waves. Once the incident angle deviates from 90° and the sound wave obliquely illuminates target with respective to the axis of the cylinder, the echo of the filling material plays a predominant role in the total scattering field. The frequency-angle spectrum of the solid filling model presents the “bowl” type resonance curve. In order to validate which physical and geometrical structure must be considered in solution of scattered far field, the acoustic scattering experiments are performed in tank with a target suspending in water, which is in monostatic arrangement and satisfies the free field condition. Frequency of incident wave is in a frequency range of 10-40 kHz. For obtaining pseudo-color image of distance-angle, echoes are received and measured when the target is rotated from 0°-360°. The scattered waves are divided into mirror reflection and various components of elastic wave, and the mechanisms of these echoes are explained based on circumferential wave around the surface. Whispering gallery waves are also considered and clearly seen in the experiment. Due to the coupling interaction between the filling and elastic shell, the resonance curve of frequency-angle spectrum splays “bowl” curve outward the sides of normally direction. Experimental and numerical results are in good agreement, which is indicated by comparing the resonance peaks characteristic in spectral domain. The results of this article will be helpful in studying underwater target with more complicated structure.
      通信作者: 李秀坤, lixiukun@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51279033)、黑龙江省自然科学基金(批准号:F201346)和海洋工程国家重点实验室(上海交通大学)开放课题(批准号:1417)资助的课题.
      Corresponding author: Li Xiu-Kun, lixiukun@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51279033), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F201346), and the State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University, China (Grant No. 1417).
    [1]

    Flax L, Dragonette L R, Uberall H 1978 J. Acoust. Soc. Am. 63 723

    [2]

    Hua D C, Peng L H, Yu X T 2010 Periodical of Ocean University of China 40 141 (in Chinese) [华大成, 彭临慧, 于小涛 2010 中国海洋大学学报 40 141]

    [3]

    Shun Y, An J Y, Xu H T 2013 Acta Acoustic 38 699 (in Chinese) [孙阳, 安俊英, 徐海亭 2013 声学学报 38 699]

    [4]

    Jin G L, Yin J F, Wen J H, Wen X S 2016 Acta Phys. Sin. 65 014305 (in Chinese) [金国梁, 尹剑飞, 温激鸿, 温熙森 2016 物理学报 65 014305]

    [5]

    Aubrey L E, Kevin L W, Daniel S P, Philip L M 2014 J. Acoust. Soc. Am. 136 109

    [6]

    Li X K, Liu M Y, Jiang S 2015 Marine Sci. Appl. 14 208

    [7]

    Pan A, Fan J, Zhuo L K 2012 Acta Phys. Sin. 61 214301 (in Chinese) [潘安, 范军, 卓琳凯 2012 物理学报 61 214301]

    [8]

    Pan A, Fan J, Wang B 2013 J. Acoust. Soc. Am. 134 3452

    [9]

    Zheng G Y, Fan J, Tang W L 2009 Acta Acoustic 34 490 (in Chinese) [郑国垠, 范军, 汤渭霖 2009 声学学报 34 490]

    [10]

    Gao H, Xu H T 2006 The Acoustic Academic Conference Xiamen, China, October 18-22, 2006 p105 (in Chinese) [高华, 徐海亭 2006 全国声学学术会议论文集, 厦门, 10月18-22日, 2006 第105页]

    [11]

    Thompson L L 2006 J. Acoust. Soc. Am. 20 1315

    [12]

    Ihlenburg F 1998 Finite Element Analysis of Acastc Scattering (Applied Mathmatical Science) (New York: Springer-Verlag) pp189-210

    [13]

    Chai Y B, Li W, Gong Z, Li T Y 2016 Ocean Eng. 116 129

    [14]

    Rajabi M, Ahmadian M T, Jamali J 2015 Compos. Struct. 128 395

    [15]

    Zampolli M, Tesei A, Finn B J 2007 J. Acoust. Soc. Am. 122 1472

    [16]

    Zampolli M, Alessandra T, Canepa G 2008 J. Acoust. Soc. Am. 123 4051

    [17]

    Hu Z, Fan J, Zhang P Z, Wu Y S 2016 Acta Phys. Sin. 65 064301 (in Chinese) [胡珍, 范军, 张培珍, 吴玉双 2016 物理学报 65 064301]

    [18]

    Zhang P Z, Wang S Z, Wang R T, Chen Y F, Wang L X 2013 Acta Acoustic 39 331 (in Chinese) [张培珍, 王朔中, 王润田, 陈云飞, 王露贤 2013 声学学报 39 331]

  • [1]

    Flax L, Dragonette L R, Uberall H 1978 J. Acoust. Soc. Am. 63 723

    [2]

    Hua D C, Peng L H, Yu X T 2010 Periodical of Ocean University of China 40 141 (in Chinese) [华大成, 彭临慧, 于小涛 2010 中国海洋大学学报 40 141]

    [3]

    Shun Y, An J Y, Xu H T 2013 Acta Acoustic 38 699 (in Chinese) [孙阳, 安俊英, 徐海亭 2013 声学学报 38 699]

    [4]

    Jin G L, Yin J F, Wen J H, Wen X S 2016 Acta Phys. Sin. 65 014305 (in Chinese) [金国梁, 尹剑飞, 温激鸿, 温熙森 2016 物理学报 65 014305]

    [5]

    Aubrey L E, Kevin L W, Daniel S P, Philip L M 2014 J. Acoust. Soc. Am. 136 109

    [6]

    Li X K, Liu M Y, Jiang S 2015 Marine Sci. Appl. 14 208

    [7]

    Pan A, Fan J, Zhuo L K 2012 Acta Phys. Sin. 61 214301 (in Chinese) [潘安, 范军, 卓琳凯 2012 物理学报 61 214301]

    [8]

    Pan A, Fan J, Wang B 2013 J. Acoust. Soc. Am. 134 3452

    [9]

    Zheng G Y, Fan J, Tang W L 2009 Acta Acoustic 34 490 (in Chinese) [郑国垠, 范军, 汤渭霖 2009 声学学报 34 490]

    [10]

    Gao H, Xu H T 2006 The Acoustic Academic Conference Xiamen, China, October 18-22, 2006 p105 (in Chinese) [高华, 徐海亭 2006 全国声学学术会议论文集, 厦门, 10月18-22日, 2006 第105页]

    [11]

    Thompson L L 2006 J. Acoust. Soc. Am. 20 1315

    [12]

    Ihlenburg F 1998 Finite Element Analysis of Acastc Scattering (Applied Mathmatical Science) (New York: Springer-Verlag) pp189-210

    [13]

    Chai Y B, Li W, Gong Z, Li T Y 2016 Ocean Eng. 116 129

    [14]

    Rajabi M, Ahmadian M T, Jamali J 2015 Compos. Struct. 128 395

    [15]

    Zampolli M, Tesei A, Finn B J 2007 J. Acoust. Soc. Am. 122 1472

    [16]

    Zampolli M, Alessandra T, Canepa G 2008 J. Acoust. Soc. Am. 123 4051

    [17]

    Hu Z, Fan J, Zhang P Z, Wu Y S 2016 Acta Phys. Sin. 65 064301 (in Chinese) [胡珍, 范军, 张培珍, 吴玉双 2016 物理学报 65 064301]

    [18]

    Zhang P Z, Wang S Z, Wang R T, Chen Y F, Wang L X 2013 Acta Acoustic 39 331 (in Chinese) [张培珍, 王朔中, 王润田, 陈云飞, 王露贤 2013 声学学报 39 331]

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 朱启轩, 孙超, 刘雄厚. 利用海底弹射区角度-距离干涉结构特征实现声源深度估计. 物理学报, 2022, 71(18): 184301. doi: 10.7498/aps.71.20220746
    [3] 洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为. 物理学报, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [4] 李树. 光子与相对论麦克斯韦分布电子散射的能谱角度谱研究. 物理学报, 2019, 68(1): 015201. doi: 10.7498/aps.68.20181796
    [5] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [6] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶. 物理学报, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [7] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [8] 鞠在强, 王研, 鲍园, 李盼云, 朱中柱, 张凯, 黄万霞, 袁清习, 朱佩平, 吴自玉. 二维光栅角度信号响应函数研究. 物理学报, 2014, 63(7): 078701. doi: 10.7498/aps.63.078701
    [9] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [10] 赵国忠, 蔚喜军. 统一坐标系下二维气动方程组的Runge-Kutta间断Galerkin有限元方法. 物理学报, 2012, 61(11): 110208. doi: 10.7498/aps.61.110208
    [11] 黄德财, 胡凤兰, 邓开明, 吴海平. 开口角度对二维颗粒流稀疏流-密集流转变的影响. 物理学报, 2010, 59(11): 8249-8254. doi: 10.7498/aps.59.8249
    [12] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [13] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [14] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [15] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征. 物理学报, 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464
    [16] 汤 波, 李俊峰, 王天舒. 水珠滴落的最小二乘粒子有限元方法模拟. 物理学报, 2008, 57(11): 6722-6729. doi: 10.7498/aps.57.6722
    [17] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构. 物理学报, 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [18] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟. 物理学报, 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [19] 厉以宇, 顾培夫, 李明宇. 利用基于自动复形技术的二维光子晶体模型设计宽角度宽波长偏振分束器. 物理学报, 2005, 54(8): 3889-3893. doi: 10.7498/aps.54.3889
    [20] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法. 物理学报, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
计量
  • 文章访问数:  5461
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 修回日期:  2016-06-20
  • 刊出日期:  2016-09-05

/

返回文章
返回