搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于4H-SiC肖特基势垒二极管的射线探测器

杜园园 张春雷 曹学蕾

引用本文:
Citation:

基于4H-SiC肖特基势垒二极管的射线探测器

杜园园, 张春雷, 曹学蕾

-ray detector based on n-type 4H-SiC Schottky barrier diode

Du Yuan-Yuan, Zhang Chun-Lei, Cao Xue-Lei
PDF
导出引用
  • 针对极端环境下耐高温和耐辐照半导体核探测器的研制需求,采用外延层厚度为100 upm的4H碳化硅(4H-SiC)制备成肖特基二极管探测器,研究了该探测器对241Am源射线的能谱响应.采用磁控溅射金属Ni制备了肖特基二极管的欧姆接触和肖特基接触,利用室温电流-电压和电容-电压测试研究了二极管的电学特性.欧姆特性测试表明,1050℃退火时,欧姆接触特性最好.从正向电流-电压曲线得出二极管肖特基势垒高度为1.617 eV,理想因子为1.127,表明探测器具备良好的热电子发射特性.从电容-电压曲线获得二极管外延层净掺杂浓度为2.9031014 cm-3,并研究了自由载流子浓度在外延层中的纵向分布.在反向偏压为500 V时,二极管的漏电流只有2.11 nA,具有较高的击穿电压.测得在-300 V条件下,SiC二极管探测器对能量为59.5 keV的射线的能量分辨率为9.49%(5.65 keV).
    Silicon carbide (SiC) is a wide band-gap, high-temperature-resistant, and radiation-resistant semiconducting material, which can be used as a radiation detector material in harsh environments such as high radiation background and high temperatures. Schottky barrier diode radiation detectors are fabricated using 100 upm-thick n-type 4H-SiC epitaxial layers for low energy -ray detection. The spectrum responses of 4H-SiC Schottky barrier detectors are investigated by irradiation of -ray from 241Am source. Schottky diodes are prepared by magnetron-sputtering 100 nm-thick nickel on epitaxial surface (Si face) to obtain Schottky contact and Ni/Au on substrate surface (C face) to obtain Ohmic back contact, respectively. Room temperature current-voltage (I-V) and capacitance-voltage (C-V) curves are measured to study the properties of Schottky diodes. Ohmic characteristic measurement shows that the Ohmic contact is formed after annealing in a temperature range of 900-1050℃, and the lowest specific contact resistivity of 2.5510-5 cm2 is obtained after annealing at 1050℃. The forward I-V curve reveals that the Schottky barrier height and the ideality factor are 1.617 eV and 1.127, respectively, indicating that the main current transportation process is the thermal electron emission. From the C-V curve, besides the net dopant concentration being inferred to be 2.9031014 cm-3, the profile of the free carrier concentration in epitaxial layer is also studied. A comparision of the reverse I-V curves of SiC Schottky diodes with different epitaxial layer thickness shows that the diode with 100 upm-thick epitaxial layer has a constant reverse leakage current when the bias voltage is less than 400 V, showing good rectification characteristics. By applying a reverse bias of 500 V, the diode has a leakage current of 2.11 nA, exhibiting a relatively high breakdown voltage. The depletion layer width of SiC detector is calculated to be 94.4 m at 500 V, indicating that the epitaxial layer is almost fully depleted. The signal of SiC detector through preamplifier displays a relatively low amplitude pulse (15 mV). A typical -ray spectrum response from SiC detector shows 9.49% (5.65 keV) energy resolution for 59.5 keV with a reverse bias of 300 V. The potential causes of poor count rate and energy resolution of fabricated detectors are analyzed in this article. The lower count rate is mainly caused by the narrow depletion layer, resulting in fewer photons deposited in sensitive region which can generate carriers. The poor energy resolution of SiC detector can be attributed to the electronic noise of read-out circuit, the pre-match amplifier circuit for detector needs to be improved, in addition, the extra defects existing in detector caused by increasing thickness of epitaxial layer can also deteriorate the detector performance.
      通信作者: 杜园园, duyuanyuan@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11203026)资助的课题.
      Corresponding author: Du Yuan-Yuan, duyuanyuan@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11203026).
    [1]

    Rogowski J, Kubiak A 2012 Mater. Sci. Eng. B 177 1318

    [2]

    Siad M, Vargas P C, Nkosi M, Saidi D, Souami N, Daas N, Chami C A 2009 Appl. Surf. Sci. 256 256

    [3]

    Bertuccio G, Caccia S, Puglisi D, Macera D 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 652 193

    [4]

    Nava F, Vittone E, Vanni P, Verzellesi G, Fuochi G P, Lanzieri C, Glaser M 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 645

    [5]

    Han C, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Guo H, Wang Y H 2015 Chin. Phys. B 24 117304

    [6]

    Yuan L, Zhang Y M, Song Q W, Tang X Y, Zhang Y M 2015 Chin. Phys. B 24 068502

    [7]

    Chaudhuri K S, Krishna M R, Zavalla J K, Mandal C K 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 701 214

    [8]

    Mandal C K, Muzykov G P, Chaudhuri K S, Terry R J 2013 IEEE Trans. Nucl. Sci. 60 2888

    [9]

    Flammang W R, Seidel G J, Ruddy H F 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 579 177

    [10]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Fan X Q 2013 High Power Laser Part. Beams 25 1793 (in Chinese)[吴健, 雷家荣, 蒋勇, 陈雨, 荣茹, 范晓强2013强激光与粒子束25 1793]

    [11]

    Wu J, Jiang Y, Gan L, Li M, Zou D H, Rong R, Lu Y, Li J J, Fan X Q, Lei J R 2015 High Power Laser Part. Beams 27 014004 (in Chinese)[吴健, 蒋勇, 甘雷, 李勐, 邹德慧, 荣茹, 鲁艺, 李俊杰, 范晓强, 雷家荣2015强激光与粒子束27 014004]

    [12]

    Jiang Y, Wu J, Wei J J, Fan X Q, Chen Y, Rong R, Zou D H, Li M, Bai S, Chen G, Li L 2013 Atomic Energy Sci. Technol. 47 664 (in Chinese)[蒋勇, 吴健, 韦建军, 范晓强, 陈雨, 荣茹, 邹德慧, 李勐, 柏松, 陈刚, 李理2013原子能科学技术47 664]

    [13]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Zou D H, Fan X Q, Chen G, Li L, Bai S 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 708 72

    [14]

    Iwamoto N, Johnson C B, Hoshino N, Ito M, Tsuchida H, Kojima K, Ohshima T 2013 J. Appl. Phys. 113 143714

    [15]

    Tong W L, Sun Y J, Liu Y H, Zhao G J, Chen Z Z 2015 J. Shanghai Normal Univ. (Nat. Sci.) 44 430(in Chinese)[童武林, 孙玉俊, 刘益宏, 赵高杰, 陈之战2015上海师范大学学报(自然科学版) 44 430]

    [16]

    Liu J, Hao Y, Feng Q, Wang C, Zhang J C, Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese)[刘杰, 郝跃, 冯倩, 王冲, 张进城, 郭亮良2007物理学报56 3483]

    [17]

    Shur M, Rumyantsev S, Levinshtein M (translated by Yang Y T, Jia H J, Duan B X) 2012 SiC Mareials and Devices, Volume I&Ⅱ (Beijing:Publishing House of Electroics Industry) pp88-92(in Chinese)[Shur M, Rumyantsev S, Levinshtein M主编(杨银堂, 贾护军, 段宝兴译) 2012碳化硅半导体材料与器件(北京:电子工业出版社)第88–92页]

    [18]

    Zha G Q, Wang T, Xu Y D, Jie W Q 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东, 介万奇2013物理42 862]

    [19]

    Bertuccio G, Casiraghi R 2003 IEEE Trans. Nucl. Sci. 50 175

    [20]

    Lees E J, Bassford J D, Fraser W G, Horsfall B A, Vassilevski V K, Wright G N, Owens A 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 578 226

    [21]

    Jiang Y, Fan X Q, Rong R, Wu J, Bai S, Li L 2012 Nucl. Electron. Detect. Technol. 32 1372 (in Chinese)[蒋勇, 范晓强, 荣茹, 吴建, 柏松, 李理2012核电子学与探测技术32 1372]

    [22]

    Mandal C K, Chaudhuri K S, Nguyen V K, Mannan A M 2014 IEEE Trans. Nucl. Sci. 61 2338

  • [1]

    Rogowski J, Kubiak A 2012 Mater. Sci. Eng. B 177 1318

    [2]

    Siad M, Vargas P C, Nkosi M, Saidi D, Souami N, Daas N, Chami C A 2009 Appl. Surf. Sci. 256 256

    [3]

    Bertuccio G, Caccia S, Puglisi D, Macera D 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 652 193

    [4]

    Nava F, Vittone E, Vanni P, Verzellesi G, Fuochi G P, Lanzieri C, Glaser M 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 645

    [5]

    Han C, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Guo H, Wang Y H 2015 Chin. Phys. B 24 117304

    [6]

    Yuan L, Zhang Y M, Song Q W, Tang X Y, Zhang Y M 2015 Chin. Phys. B 24 068502

    [7]

    Chaudhuri K S, Krishna M R, Zavalla J K, Mandal C K 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 701 214

    [8]

    Mandal C K, Muzykov G P, Chaudhuri K S, Terry R J 2013 IEEE Trans. Nucl. Sci. 60 2888

    [9]

    Flammang W R, Seidel G J, Ruddy H F 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 579 177

    [10]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Fan X Q 2013 High Power Laser Part. Beams 25 1793 (in Chinese)[吴健, 雷家荣, 蒋勇, 陈雨, 荣茹, 范晓强2013强激光与粒子束25 1793]

    [11]

    Wu J, Jiang Y, Gan L, Li M, Zou D H, Rong R, Lu Y, Li J J, Fan X Q, Lei J R 2015 High Power Laser Part. Beams 27 014004 (in Chinese)[吴健, 蒋勇, 甘雷, 李勐, 邹德慧, 荣茹, 鲁艺, 李俊杰, 范晓强, 雷家荣2015强激光与粒子束27 014004]

    [12]

    Jiang Y, Wu J, Wei J J, Fan X Q, Chen Y, Rong R, Zou D H, Li M, Bai S, Chen G, Li L 2013 Atomic Energy Sci. Technol. 47 664 (in Chinese)[蒋勇, 吴健, 韦建军, 范晓强, 陈雨, 荣茹, 邹德慧, 李勐, 柏松, 陈刚, 李理2013原子能科学技术47 664]

    [13]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Zou D H, Fan X Q, Chen G, Li L, Bai S 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 708 72

    [14]

    Iwamoto N, Johnson C B, Hoshino N, Ito M, Tsuchida H, Kojima K, Ohshima T 2013 J. Appl. Phys. 113 143714

    [15]

    Tong W L, Sun Y J, Liu Y H, Zhao G J, Chen Z Z 2015 J. Shanghai Normal Univ. (Nat. Sci.) 44 430(in Chinese)[童武林, 孙玉俊, 刘益宏, 赵高杰, 陈之战2015上海师范大学学报(自然科学版) 44 430]

    [16]

    Liu J, Hao Y, Feng Q, Wang C, Zhang J C, Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese)[刘杰, 郝跃, 冯倩, 王冲, 张进城, 郭亮良2007物理学报56 3483]

    [17]

    Shur M, Rumyantsev S, Levinshtein M (translated by Yang Y T, Jia H J, Duan B X) 2012 SiC Mareials and Devices, Volume I&Ⅱ (Beijing:Publishing House of Electroics Industry) pp88-92(in Chinese)[Shur M, Rumyantsev S, Levinshtein M主编(杨银堂, 贾护军, 段宝兴译) 2012碳化硅半导体材料与器件(北京:电子工业出版社)第88–92页]

    [18]

    Zha G Q, Wang T, Xu Y D, Jie W Q 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东, 介万奇2013物理42 862]

    [19]

    Bertuccio G, Casiraghi R 2003 IEEE Trans. Nucl. Sci. 50 175

    [20]

    Lees E J, Bassford J D, Fraser W G, Horsfall B A, Vassilevski V K, Wright G N, Owens A 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 578 226

    [21]

    Jiang Y, Fan X Q, Rong R, Wu J, Bai S, Li L 2012 Nucl. Electron. Detect. Technol. 32 1372 (in Chinese)[蒋勇, 范晓强, 荣茹, 吴建, 柏松, 李理2012核电子学与探测技术32 1372]

    [22]

    Mandal C K, Chaudhuri K S, Nguyen V K, Mannan A M 2014 IEEE Trans. Nucl. Sci. 61 2338

  • [1] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器. 物理学报, 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [2] 武鹏, 朱宏宇, 吴金星, 张涛, 张进成, 郝跃. 基于湿法腐蚀凹槽阳极的低漏电高耐压AlGaN/GaN肖特基二极管. 物理学报, 2023, 72(17): 178501. doi: 10.7498/aps.72.20230709
    [3] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术. 物理学报, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [4] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [5] 常帅军, 马海伦, 李浩, 欧树基, 郭建飞, 钟鸣浩, 刘莉. 一种能够改善鲁棒性的新型4H-SiC ESD防护器件. 物理学报, 2022, 71(19): 198501. doi: 10.7498/aps.71.20220879
    [6] 宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪. 基于晶向优化和Sn合金化技术的一种2.45 G弱能量微波无线输能用Ge基肖特基二极管. 物理学报, 2021, 70(10): 108401. doi: 10.7498/aps.70.20201674
    [7] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211536
    [8] 李传纲, 鞠涛, 张立国, 李杨, 张璇, 秦娟, 张宝顺, 张泽洪. Ti, N共掺杂4H-SiC复合增强缓冲层生长及其对PiN二极管正向性能稳定性的改善. 物理学报, 2021, 70(3): 037102. doi: 10.7498/aps.70.20200921
    [9] 李妤晨, 陈航宇, 宋建军. 用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管. 物理学报, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [10] 翟东媛, 赵毅, 蔡银飞, 施毅, 郑有炓. 沟槽形状对硅基沟槽式肖特基二极管电学特性的影响. 物理学报, 2014, 63(12): 127201. doi: 10.7498/aps.63.127201
    [11] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [12] 程萍, 张玉明, 张义门. 退火对非故意掺杂4H-SiC外延材料386 nm和388 nm发射峰的影响. 物理学报, 2011, 60(1): 017103. doi: 10.7498/aps.60.017103
    [13] 苗瑞霞, 张玉明, 汤晓燕, 张义门. 4H-SiC中基面位错发光特性研究. 物理学报, 2011, 60(3): 037808. doi: 10.7498/aps.60.037808
    [14] 贾仁需, 张义门, 张玉明, 王悦湖. N型4H-SiC同质外延生长. 物理学报, 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [15] 杨丽侠, 杜 磊, 包军林, 庄奕琪, 陈晓东, 李群伟, 张 莹, 赵志刚, 何 亮. 60Co γ-射线辐照对肖特基二极管1/f噪声的影响. 物理学报, 2008, 57(9): 5869-5874. doi: 10.7498/aps.57.5869
    [16] 徐静平, 李春霞, 吴海平. 4H-SiC n-MOSFET的高温特性分析. 物理学报, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [17] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究. 物理学报, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [18] 张洪涛, 徐重阳, 邹雪城, 王长安, 赵伯芳, 周雪梅, 曾祥斌. 4H-SiC纳米薄膜的微结构及其光电性质研究. 物理学报, 2002, 51(2): 304-309. doi: 10.7498/aps.51.304
    [19] 杨林安, 张义门, 龚仁喜, 张玉明. 4H-SiC射频功率MESFET的自热效应分析. 物理学报, 2002, 51(1): 148-152. doi: 10.7498/aps.51.148
    [20] 徐昌发, 杨银堂, 刘莉. 4H-SiC MOSFET的温度特性研究. 物理学报, 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
计量
  • 文章访问数:  6052
  • PDF下载量:  343
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 修回日期:  2016-07-29
  • 刊出日期:  2016-10-05

/

返回文章
返回