搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竞争非局域三次五次非线性介质中孤子的传输特性

黄光侨 林机

引用本文:
Citation:

竞争非局域三次五次非线性介质中孤子的传输特性

黄光侨, 林机

Propagating properties of spatial solitons in the competing nonlocal cubic-quintic nonlinear media

Huang Guang-Qiao, Lin Ji
PDF
导出引用
  • 研究空间光孤子在一维竞争非局域三次五次非线性介质中的新解和传输特性.发现亮孤子在竞争非局域三次自散焦和五次自聚焦非线性介质中存在不稳定区间.在一般非局域程度下,对于不同的三次非线性效应,同相位复合两孤子间表现为吸引或排斥的相互作用,并讨论了折射率的变化.在竞争非局域三次自聚焦和五次自散焦非线性介质中给出了二极、三极和四极孤子能稳定传播的条件,研究发现更高极孤子的传播是不稳定的.还研究了孤子功率与传播常数以及非局域程度的关系.
    We study the new spatial optical solitons and their propagating properties in the one-dimensional nonlocal cubic-quintic (C-Q) nonlinear model by the numerical method. We obtain multi-bright solitons and multipole soliton solutions in the one-dimensional nonlocal C-Q nonlinear model. The propagation of bright solitons is stable in the competing nonlocal cubic self-defocusing and quintic self-focusing nonlinear media when these nonlocal and nonlinear parameters are in the appropriate value domain. Considering the different nonlinear cubic effects, the interaction between two optical solitons with the same phase in the general nonlocal media displays the attraction or the repulsion for different nonlocal and nonlinear parameters. We find that the interval of two solitons affects the interaction between them. The refractive index is changed with the propagating constant when the nonlocal constant d3 is 10. Moreover, the triplepole, quadrupole and pentapole solitons can propagate steadily when the nonlocal parameters are appropriate, but hexa-pole (or above) solitons propagate unsteadily for any nonlocal parameter. Furthermore, we investigate the multi-pole solitons and their propagation stabilities by the Newton difference method and the Fourier split step method, obtain the stable propagation conditions for dipole, triplepole and quadrupole solitons, and find that the propagation of the pentapole and higher-order pole solitons is unstable. We also discuss the interactions of multi-pole solitons when they propagate along the axis z. The interactions are attraction or repulsion when the nonlocal and the nonlinear parameters are different. Meanwhile, we simulate the evolution of the refractive index along the axis z when the spatial optical solitons are multi-pole solitons. Finally, we study the relation between the power of soliton and the propagation constant under different degree of nonlocality. The power of the single bright soliton does not monotonically increase with the increasing propagation constant when the degree of nonlocality d3 is 10. We also derive the relation between the power of dipole bright solitons with the cubic nonlinearity parameter and the propagation constant under different degree of nonlocality. The power decreases monotonically with the increasing propagation constant when the cubic nonlinearity is a certain value or with the increasing cubic nonlinearity when the propagation constant is a certain value.
      通信作者: 林机, linji@zjnu.edu.cn
    • 基金项目: 浙江省自然科学基金重点项目(批准号:LZ15A050001)和国家自然科学基金(批准号:11675146)资助的课题.
      Corresponding author: Lin Ji, linji@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of Zhejiang Province, China (Grant No. LZ15A050001) and the National Natural Science Foundation of China (Grant No. 11675146).
    [1]

    Conti C, Peccianti M, Assanto G 2003Phys.Rev.Lett. 91 073901

    [2]

    Conti C, Peccianti M, Assanto G 2004Phys.Rev.Lett. 92 113902

    [3]

    Fratalocchi A, Assanto G, Brzdakiewicz K A, Karpierz M A 2004Opt.Lett. 29 1530

    [4]

    Conti C, Peccianti M, Assanto G 2006Opt.Lett. 31 2030

    [5]

    Dabby F W, Whinnery J R 1968Appl.Phys.Lett. 13 284

    [6]

    Rotschild C, Cohen O, Manela O, Segev M, Carmon T 2005Phys.Rev.Lett. 95 213904

    [7]

    Xie Y Q, Guo Q 2004Acta Phys.Sin. 53 3020(in Chinese)[谢逸群, 郭旗2004物理学报53 3020]

    [8]

    Cao J N, Guo Q 2005Acta Phys.Sin. 54 3688(in Chinese)[曹觉能, 郭旗2005物理学报54 3688]

    [9]

    Ghofraniha N, Conti C, Ruocco G, Trillo S 2007Phys.Rev.Lett. 99 043903

    [10]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999Phys.Rev.Lett. 83 5198

    [11]

    Rasmussen P D, Bang O, Krolikowski W 2005Phys.Rev.E 72 066611

    [12]

    Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004Opt.Lett. 29 286

    [13]

    Esbensen B K, Bache M, Bang O, Krolikowski W 2012Phys.Rev.A 86 033838

    [14]

    Jia J, Lin J 2012Opt.Express 20 7469

    [15]

    Snyder A W, Mitchell D J 1997Science 276 1538

    [16]

    Mihalache D, Mazilu D, Lederer F, Crasovan L C, Kartashov Y V, Torner L, Malomed B A 2006Phys.Rev.E 74 066614

    [17]

    Doktorov E V, Molchan M A 2008J.Phys.A:Math.Theor. 41 315101

    [18]

    Tsoy E N 2010Phys.Rev.A 82 063829

    [19]

    Zhou Z X, Du Y W, Hou C F, Tian H, Wang Y 2011J.Opt.Soc.Am.B 28 1583

    [20]

    Xu Z Y, Kartashov Y V, Torner L 2005Opt.Lett. 30 3171

    [21]

    Dong L W, Ye F W 2010Phys.Rev.A 81 013815

    [22]

    Kartashov Y V, Vysloukh V A, Torner L 2008Opt.Lett. 33 1747

    [23]

    Du Y W, Zhou Z X, Tian H, Liu D J 2011J.Opt. 13 015201

  • [1]

    Conti C, Peccianti M, Assanto G 2003Phys.Rev.Lett. 91 073901

    [2]

    Conti C, Peccianti M, Assanto G 2004Phys.Rev.Lett. 92 113902

    [3]

    Fratalocchi A, Assanto G, Brzdakiewicz K A, Karpierz M A 2004Opt.Lett. 29 1530

    [4]

    Conti C, Peccianti M, Assanto G 2006Opt.Lett. 31 2030

    [5]

    Dabby F W, Whinnery J R 1968Appl.Phys.Lett. 13 284

    [6]

    Rotschild C, Cohen O, Manela O, Segev M, Carmon T 2005Phys.Rev.Lett. 95 213904

    [7]

    Xie Y Q, Guo Q 2004Acta Phys.Sin. 53 3020(in Chinese)[谢逸群, 郭旗2004物理学报53 3020]

    [8]

    Cao J N, Guo Q 2005Acta Phys.Sin. 54 3688(in Chinese)[曹觉能, 郭旗2005物理学报54 3688]

    [9]

    Ghofraniha N, Conti C, Ruocco G, Trillo S 2007Phys.Rev.Lett. 99 043903

    [10]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999Phys.Rev.Lett. 83 5198

    [11]

    Rasmussen P D, Bang O, Krolikowski W 2005Phys.Rev.E 72 066611

    [12]

    Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004Opt.Lett. 29 286

    [13]

    Esbensen B K, Bache M, Bang O, Krolikowski W 2012Phys.Rev.A 86 033838

    [14]

    Jia J, Lin J 2012Opt.Express 20 7469

    [15]

    Snyder A W, Mitchell D J 1997Science 276 1538

    [16]

    Mihalache D, Mazilu D, Lederer F, Crasovan L C, Kartashov Y V, Torner L, Malomed B A 2006Phys.Rev.E 74 066614

    [17]

    Doktorov E V, Molchan M A 2008J.Phys.A:Math.Theor. 41 315101

    [18]

    Tsoy E N 2010Phys.Rev.A 82 063829

    [19]

    Zhou Z X, Du Y W, Hou C F, Tian H, Wang Y 2011J.Opt.Soc.Am.B 28 1583

    [20]

    Xu Z Y, Kartashov Y V, Torner L 2005Opt.Lett. 30 3171

    [21]

    Dong L W, Ye F W 2010Phys.Rev.A 81 013815

    [22]

    Kartashov Y V, Vysloukh V A, Torner L 2008Opt.Lett. 33 1747

    [23]

    Du Y W, Zhou Z X, Tian H, Liu D J 2011J.Opt. 13 015201

  • [1] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [2] 孙小聪, 李卫, 王雅君, 郑耀辉. 基于压缩态光场的量子增强型光学相位追踪. 物理学报, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [3] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [4] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [5] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象. 物理学报, 2022, 71(17): 174201. doi: 10.7498/aps.71.20220978
    [6] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [7] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [8] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [9] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [10] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [11] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [12] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [13] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响. 物理学报, 2019, 68(2): 023102. doi: 10.7498/aps.68.20181915
    [14] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控. 物理学报, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
计量
  • 文章访问数:  5560
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-11
  • 修回日期:  2016-12-05
  • 刊出日期:  2017-03-05

/

返回文章
返回