-
Evaporation of colloidal droplets often leads to various deposited patterns which are not only interesting but also provide a very simple and useful method to fabricate functional materials. The patterns induced by the evaporation can be tuned via several factors, among which the roughness of the substrate is an important one. However, the effect of nano-scaled roughness is scarcely studied and far from being fully understood. In this work, the evaporation and pattern formation of SiO2 colloid droplets are studied on smooth substrate and nano-rough substrate, respectively. The aim of this work is to clarify how the evaporation dynamics and patterns are influenced by nano-scaled roughness. The roughness of the substrate is analyzed by using a scanning electron microscope and an atomic force microscope, the evaporation process and pattern formation are monitored via an in-situ microscope observation. The obtained deposited patterns are analyzed by using stylus profiling. It is found that the evaporation of droplets is accompanied by an obvious coffee ring effect on smooth substrate and the deposition patterns are bowl-shaped. However, uniform thickness evaporation patterns are obtained through evaporation on rough substrate, moreover, the crack density increases obviously. The analysis shows that nano-roughness is able to inhibit the circumfluence of droplets along the substrate, which greatly weakens the compensation for capillary flow, leading to particles gathering at air-droplet interface and formulating a particle layer. This prevents the coffee ring effect, and eventually results in the formation of evaporation patterns with uniform thickness.
-
Keywords:
- roughness /
- colloidal droplet /
- evaporation pattern /
- coffee ring effect
[1] Sefiane K 2014 Adv. Colloid Interface Sci. 206 372
[2] Chen R, Zhang L, Zang D, Shen W 2016 Adv. Colloid Interface Sci. 23 1
[3] Keseroglu K, Culha M 2011 J. Colloid Interface Sci. 360 8
[4] Yoo H, Kim C 2015 Colloids Surf. A 468 234
[5] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827
[6] Li Y S, L C J, Li Z H, Qur D, Zheng Q S 2015 Soft Matter 11 4669
[7] Larson R G 2012 Angewandte Chemie 51 2546
[8] Cui L, Zhang J, Zhang X, Li Y, Wang Z, Gao H, Wang T, Zhu S, Yu H, Yang B 2012 Soft Matter 8 10448
[9] Yunker P J, Still T, Lohr M A, Yodh A G 2011 Nature 476 308
[10] Zhang Y, Liu Z, Zang D, Qian Y, Lin K 2013 Sci. China: Phys. Mech. Astron. 56 1712
[11] Chiu R C, Garino T J, Cima M J 1993 J. Am. Ceram. Soc. 76 2257
[12] Sendova M, Willis K 2003 Appl. Phys. A 76 957
[13] Goehring L, Clegg W J, Routh A F 2011 Soft Matter 7 7984
[14] Jing G, Ma J 2012 J. Phys. Chem. B 116 6225
[15] Zhang Y, Qian Y, Liu Z, Li Z, Zang D 2014 Eur. Phys. J. E 37 38
[16] Boulogne F, Pauchard L, Giorgiutti-Dauphin F 2012 Soft Matter 8 8505
[17] Liu T, Luo H, Ma J, Xie W, Wang Y, Jing G 2016 Eur. Phys. J. E 39 24
[18] Zhang Y, Liu Z, Feng L, Zang D 2012 Appl. Surf. Sci. 258 5354
[19] Zhang Y, Liu Z, Zang D, Feng L 2014 Vacuum 99 160
[20] Daubersies L, Salmon J B 2011 Phys. Rev. E 84 031406
[21] Chiu R C, Cima M J 1993 J. Am. Ceram. Soc. 76 2769
[22] Berteloot G, Hoang A, Daerr A, Kavehpour H P, Lequeux F, Limat L 2012 J. Colloid Interface Sci. 370 155
[23] Chen L, Evans J R 2010 J. Colloid Interface Sci. 351 283
[24] Bocquet L, Charlaix E 2010 Chem. Soc. Rev. 39 1073
[25] Lee C, Kim C J 2011 Langmuir 27 4243
-
[1] Sefiane K 2014 Adv. Colloid Interface Sci. 206 372
[2] Chen R, Zhang L, Zang D, Shen W 2016 Adv. Colloid Interface Sci. 23 1
[3] Keseroglu K, Culha M 2011 J. Colloid Interface Sci. 360 8
[4] Yoo H, Kim C 2015 Colloids Surf. A 468 234
[5] Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827
[6] Li Y S, L C J, Li Z H, Qur D, Zheng Q S 2015 Soft Matter 11 4669
[7] Larson R G 2012 Angewandte Chemie 51 2546
[8] Cui L, Zhang J, Zhang X, Li Y, Wang Z, Gao H, Wang T, Zhu S, Yu H, Yang B 2012 Soft Matter 8 10448
[9] Yunker P J, Still T, Lohr M A, Yodh A G 2011 Nature 476 308
[10] Zhang Y, Liu Z, Zang D, Qian Y, Lin K 2013 Sci. China: Phys. Mech. Astron. 56 1712
[11] Chiu R C, Garino T J, Cima M J 1993 J. Am. Ceram. Soc. 76 2257
[12] Sendova M, Willis K 2003 Appl. Phys. A 76 957
[13] Goehring L, Clegg W J, Routh A F 2011 Soft Matter 7 7984
[14] Jing G, Ma J 2012 J. Phys. Chem. B 116 6225
[15] Zhang Y, Qian Y, Liu Z, Li Z, Zang D 2014 Eur. Phys. J. E 37 38
[16] Boulogne F, Pauchard L, Giorgiutti-Dauphin F 2012 Soft Matter 8 8505
[17] Liu T, Luo H, Ma J, Xie W, Wang Y, Jing G 2016 Eur. Phys. J. E 39 24
[18] Zhang Y, Liu Z, Feng L, Zang D 2012 Appl. Surf. Sci. 258 5354
[19] Zhang Y, Liu Z, Zang D, Feng L 2014 Vacuum 99 160
[20] Daubersies L, Salmon J B 2011 Phys. Rev. E 84 031406
[21] Chiu R C, Cima M J 1993 J. Am. Ceram. Soc. 76 2769
[22] Berteloot G, Hoang A, Daerr A, Kavehpour H P, Lequeux F, Limat L 2012 J. Colloid Interface Sci. 370 155
[23] Chen L, Evans J R 2010 J. Colloid Interface Sci. 351 283
[24] Bocquet L, Charlaix E 2010 Chem. Soc. Rev. 39 1073
[25] Lee C, Kim C J 2011 Langmuir 27 4243
计量
- 文章访问数: 6804
- PDF下载量: 309
- 被引次数: 0